Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; BRAT1-related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling.
Background-The importance of noncoding RNAs (ncRNA), especially microRNAs (miRNAs), for maintaining stability in the developing vertebrate heart has recently become apparent; however, there is little known about the expression pattern of ncRNA in the human heart with developmental anomalies. Methods and Results-We examined the expression of miRNAs and small nucleolar RNAs (snoRNAs) in right ventricular myocardium from 16 infants with nonsyndromic tetralogy of Fallot (TOF) without a 22q11.2 deletion, 3 fetal heart samples, and 8 normally developing infants. We found 61 miRNAs and 135 snoRNAs to be significantly changed in expression in myocardium from children with TOF compared with normally developing comparison subjects. The pattern of ncRNA expression in TOF myocardium had a surprising resemblance to expression patterns in fetal myocardium, especially for the snoRNAs. Potential targets of miRNAs with altered expression were enriched for gene networks of importance to cardiac development. We derived a list of 229 genes known to be critical to heart development and found 44 had significantly changed expression in TOF myocardium relative to normally developing myocardium. These 44 genes had significant negative correlation with 33 miRNAs, each of which also had significantly changed expression. The primary function of snoRNAs is targeting specific nucleotides of ribosomal RNAs and spliceosomal RNAs for biochemical modification. The targeted nucleotides of the differentially expressed snoRNAs were concentrated in the 28S and 18S ribosomal RNAs and 2 spliceosomal RNAs, U2 and U6. In addition, in myocardium from children with TOF, we observed splicing variants in 51% of genes that are critical for cardiac development. Taken together, these observations suggest a link between levels of snoRNA that target spliceosomal RNAs, spliceosomal function, and heart development. Conclusions-This is the first report characterizing ncRNA expression in a congenital heart defect. The striking shift in expression of ncRNAs reflects a fundamental change in cell biology, likely impacting expression, transcript splicing, and translation of developmentally important genes and possibly contributing to the cardiac defect. (Circ Cardiovasc Genet. 2012;5:279-286.)Key Words: tetralogy of Fallot Ⅲ cardiac development Ⅲ microRNA Ⅲ miRNA Ⅲ small nucleolar RNA Ⅲ snoRNA T he heart is the first major internal organ to form during embryogenesis, and it is critical for the viability of the embryo. A multitude of genes and genetic networks contribute to the spatial and temporal specification of cell lineage required for proper embryological heart formation. 1 Failure of proper cellular differentiation, migration, and apoptosis results in congenital heart defects (CHD), which are a major cause of childhood morbidity and mortality and remains a substantial challenge even in countries with advanced healthcare systems. The incidence of CHD is approximately 8 per 1000 live births, 2 making CHD the most common birth defect. Mendelian and chromosomal syndro...
The central role of T-tubule and sarcoplasmic reticulum (SR) diadic junctions in excitation-contraction (EC) coupling in adult (AD) ventricular myocytes suggests that their absence in newborn (NB) cells may manifest as an altered EC coupling phenotype. We used confocal microscopy to compare fluo-3 [Ca2+]i transients in the subsarcolemmal space and cell center of field-stimulated NB and AD rabbit ventricular myocytes. Peak systolic [Ca2+]i occurred sooner and was higher in the subsarcolemmal space compared with the cell center in NB myocytes. In AD myocytes, [Ca2+]i rose and declined with similar profiles at the cell center and subsarcolemmal space. Disabling the SR (10 micromol/L thapsigargin) slowed the rate of rise and decline of Ca2+ in AD myocytes but did not alter Ca2+ transient kinetics in NB myocytes. In contrast to adults, localized SR Ca2+ release events ("Ca2+ sparks") occurred predominantly at the cell periphery of NB myocytes. Immunolabeling experiments demonstrated overlapping distributions of the Na(+)-Ca2+ exchanger and ryanodine receptors (RyR2) in AD myocytes. In contrast, RyR2s were spatially separated from the sarcolemma in NB myocytes. Confocal sarcolemmal imaging of di-8-ANEPPS-treated myocytes confirmed an extensive T-tubule network in AD cells, and that T-tubules are absent in NB myocytes. A mathematical model of subcellular Ca2+ dynamics predicts that Ca2+ flux via the Na(+)-Ca2+ exchanger during an action potential can account for the subsarcolemmal Ca2+ gradients in NB myocytes. Spatial separation of sarcolemmal Ca2+ entry from SR Ca2+ release channels may minimize the role of SR Ca2+ release during normal EC coupling in NB ventricular myocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.