[1] The augmented Noah land surface model described in the first part of the two-part series was evaluated here over global river basins. Across various climate zones, global-scale tests can reveal a model's weaknesses and strengths that a local-scale testing cannot. In addition, global-scale tests are more challenging than local-and catchment-scale tests. Given constant model parameters (e. g., runoff parameters) across global river basins, global-scale tests are more stringent. We assessed model performance against various satellite and ground-based observations over global river basins through six experiments that mimic a transition from the original Noah LSM to the fully augmented version. The model shows transitional improvements in modeling runoff, soil moisture, snow, and skin temperature, despite considerable increase in computational time by the fully augmented Noah-MP version compared to the original Noah LSM. The dynamic vegetation model favorably captures seasonal and spatial variability of leaf area index and green vegetation fraction. We also conducted 36 ensemble experiments with 36 combinations of optional schemes for runoff, leaf dynamics, stomatal resistance, and the b factor. Runoff schemes play a dominant and different role in controlling soil moisture and its relationship with evapotranspiration compared to ecological processes such as the b factor, vegetation dynamics, and stomatal resistance. The 36-member ensemble mean of runoff performs better than any single member over the world's 50 largest river basins, suggesting a great potential of land-based ensemble simulations for climate prediction.
A high-resolution climate model (4-km horizontal grid spacing) is used to examine the following question: How will long-term changes in climate impact the partitioning of annual precipitation between evapotranspiration and runoff in the Colorado Headwaters?
This question is examined using a climate sensitivity approach in which eight years of current climate is compared to a future climate created by modifying the current climate signal with perturbation from the NCAR Community Climate System Model, version 3 (CCSM3), model forced by the A1B scenario for greenhouse gases out to 2050. The current climate period is shown to agree well with Snowpack Telemetry (SNOTEL) surface observations of precipitation (P) and snowpack, as well as streamflow and AmeriFlux evapotranspiration (ET) observations. The results show that the annual evaporative fraction (ET/P) for the Colorado Headwaters is 0.81 for the current climate and 0.83 for the future climate, indicating increasing aridity in the future despite a positive increase of precipitation. Runoff decreased by an average of 6%, reflecting the increased aridity.
Precipitation increased in the future winter by 12%, but decreased in the summer as a result of increased low-level inhibition to convection. The fraction of precipitation that fell as snow decreased from 0.83 in the current climate to 0.74 in the future. Future snowpack did not change significantly until January. From January to March the snowpack increased above ~3000 m MSL and decreased below that level. Snowpack decreased at all elevations in the future from April to July. The peak snowpack and runoff over the headwaters occurred 2–3 weeks earlier in the future simulation, in agreement with previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.