The "antibiotic era", characterized by the overuse and misuse of antibiotics, over the last half-century has culminated in the present critical "era of resistance". The treatment of bacterial infections is challenging because of a decline in the current arsenal of useful antibiotics and the slow rate of new drug development. The discovery of a new gene (mcr-1) in 2015, which enables bacteria to be highly resistant to polymyxins (such as colistin), the last line of antibiotic defence left, heralds a new level of concern as this gene is susceptible to horizontal gene transfer, with alarming potential to be spread between different bacterial populations, suggesting that the progression from "extensive drug resistance" to "pan-drug resistance" may be inevitable. Clearly there is a need for the development of novel classes of anti-bacterial agents capable of killing bacteria through mechanisms that are different to those of the known classes of antibiotics. 1,10-phenanthroline (phen) is a heterocyclic organic compound which exerts in vitro antimicrobial activity against a broad-spectrum of bacteria. The antimicrobial activity of phen can be significantly modulated by modifying its structure. The development of metal-phen complexes offers the medicinal chemist an opportunity to expand such structural diversity by controlling the geometry and varying the oxidation states of the metal centre, with the inclusion of appropriate auxiliary ligands in the structure, offering the opportunity to target different biochemical pathways in bacteria. In this review, we summarize what is currently known about the antibacterial capability of metal-phen complexes and their mechanisms of action.
1,10-Phenanthroline ( phen, 5), 1,10-phenanthroline-5,6-dione ( phendione, 6), [Cu( phendione) 3 ]-(ClO 4 ) 2 ·4H 2 O (12) and [Ag( phendione) 2 ]ClO 4 (13) are highly active, in vitro, against a range of normal and cancerous mammalian cells, fungal and insect cell lines, with the metal complexes offering a clear enhancement in activity. Cytoselectivity was not observed between the tumorigenic and non-tumorigenic mammalian lines. In in vivo tests, using Galleria mellonella and Swiss mice, all four compounds were well tolerated in comparison to the clinical agent, cisplatin. In addition, blood samples taken from the Swiss mice showed that the levels of the hepatic enzymes, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), remained unaffected. Immunocompromised nude mice showed a much lower tolerance to 13 and, subsequently, when these mice were implanted with Hep-G2 (hepatic) and HCT-8 (colon) human-derived tumors, there was no influence on tumor growth.
The mode of action of the anti-fungal compounds, 1,10-phenanthroline (phen), [Cu(phen)2(mal)] x 2H2O, [Mn(phen)2(mal)] x 2H2O and [Ag2(phen)3(mal)] x 2H2O (malH2 = malonic acid), was examined using the pathogenic yeast Candida albicans. The compounds have minimum inhibitory concentrations (MIC's) in the range 1.25-5.0 microg cm(-3) and at a concentration of 10 microg cm(-3) display some fungicidal activity. Yeast cells exposed to these drugs show a diminished ability to reduce 2,3,5-triphenyltetrazolium chloride (TTC), indicating a reduction in respiratory function. Treating exponential and stationary phase yeast cells with phen and the Cu(II) and Mn(II) complexes causes a dramatic increase in oxygen consumption. All of the drugs promote reductions in the levels of cytochromes b and c in the cells, whilst the Ag(I) complex also lowers the amount of cytochrome aa3. Cells treated with phen and the Cu(II) and Ag(I) species show reduced levels of ergosterol whilst the Mn(II) complex induces an increase in the sterol concentration. The general conclusion is that the drugs damage mitochondrial function and uncouple respiration. That the drugs are not uniformly active suggests their bioactivity has a degree of metal-ion dependency. Phen and metal-phen complexes represent a novel set of highly active anti-fungal agents whose mode of action is significantly different to that of the polyene and azole prescription drugs.
1,10-Phenanthroline (phen) and metal-phen complexes display fungicidal and fungiststic activity, disrupt mitochondrial function and induce oxidative stress. We have examined the effect of these drugs on the structure of yeast and mammalian cell organelles and the integrity of cellular DNA. Exposure of Candida albicans to [Mn(phen) 2 (mal)].2H 2 O or [Ag 2 (phen) 3 (mal)].2H 2 O (mal H 2 =malonic acid) resulted in DNA degradation whereas exposure to phen or [Cu(phen) 2 (mal)].2H 2 O did not. All drugs induced extensive changes to the internal structure of yeast cells including retraction of the cytoplasm, nuclear fragmentation and disruption of the mitochondrion. In the case of cultured mammalian cells [Cu(phen) 2 (mal)].2H 2 O induced apoptosis as evidenced by the ladder pattern of DNA fragments following gel electrophoresis and also the blebbing of the cell membrane. The other drugs produced non-specific DNA degradation in mammalian cells. In conclusion, phen and metal-phen complexes have the potential to induce apoptosis in fungal and mammalian cells. Given their distinct mode of action compared to conventional anti-fungal drugs, phen and metal-phen complexes may represent a novel group of anti-fungal agents for use either in combination with existing drugs or in cases where resistance to conventional drugs has emerged. #
The Cu(II) and Ag(I) complexes, [Cu(phendio) 3 ](ClO 4 ) 2 ·4H 2 O and [Ag(phendio) 2 ]ClO 4 (phendio = 1,10-phenanthroline-5,6-dione), are prepared in good yield by reacting phendio with the appropriate metal perchlorate salt. The X-ray crystal structure of the Ag(I) complex shows it to have a pseudo tetrahedral structure. 'Metal-free' phendio and the Cu(II) and Ag(I) phendio complexes strongly inhibit the growth of the fungal pathogen Candida albicans, and are more active than their 1,10-phenanthroline analogues. The simple Ag(I) salts, AgCH 3 CO 2 , AgNO 3 and AgClO 4 .H 2 O display superior anti-fungal properties compared to analogous simple Cu(II) and Mn(II) salts, suggesting that the nature of the metal ion strongly influences activity. Exposing C. albicans to 'metal-free' phendio, simple Ag(I) salts and [Ag(phendio) 2 ]ClO 4 causes extensive, non-specific DNA cleavage. 'Metal-free' phendio and [Ag(phendio) 2 ]ClO 4 induce gross distortions in fungal cell morphology and there is evidence for disruption of cell division. Both drugs also exhibit high anti-cancer activity when tested against cultured mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.