Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. (Am J Pathol 2015 http://dx
Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes.
Wound healing is a physiological reparative response to injury and a well-orchestrated process that involves hemostasis, cellular migration, proliferation, angiogenesis, extracellular matrix deposition, and wound contraction and re-epithelialization. However, patients with type 2 diabetes mellitus (T2D) are frequently afflicted with impaired wound healing that progresses into chronic wounds or diabetic ulcers, and may lead to complications including limb amputation. Herein, we investigate the potential role of microRNA-26a (miR-26a) in a diabetic model of wound healing. Expression of miR-26a is rapidly induced in response to high glucose in endothelial cells (ECs). Punch skin biopsy wounding of db/db mice revealed increased expression of miR-26a (~3.5-fold) four days post-wounding compared to that of WT mice. Local administration of a miR-26a inhibitor, LNA-anti-miR-26a, induced angiogenesis (up to ~80%), increased granulation tissue thickness (by 2.5-fold) and accelerated wound closure (53% after nine days) compared to scrambled anti-miR controls in db/db mice. These effects were independent of altered M1/M2 macrophage ratios. Mechanistically, inhibition of miR-26a increased its target gene SMAD1 in ECs nine days post-wounding of diabetic mice. In addition, high glucose reduced activity of the SMAD1-3’-UTR. Diabetic dermal wounds treated with LNA-anti-miR-26a had increased expression of ID1, a downstream modulator or SMAD1, and decreased expression of the cell cycle inhibitor p27. These findings establish miR-26a as an important regulator on the progression of skin wounds of diabetic mice by specifically regulating the angiogenic response after injury, and demonstrate that neutralization of miR-26a may serve as a novel approach for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.