A murine model of ataxia telangiectasia was created by disrupting the Atm locus via gene targeting. Mice homozygous for the disrupted Atm allele displayed growth retardation, neurologic dysfunction, male and female infertility secondary to the absence of mature gametes, defects in T lymphocyte maturation, and extreme sensitivity to gamma-irradiation. The majority of animals developed malignant thymic lymphomas between 2 and 4 months of age. Several chromosomal anomalies were detected in one of these tumors. Fibroblasts from these mice grew slowly and exhibited abnormal radiation-induced G1 checkpoint function. Atm-disrupted mice recapitulate the ataxia telangiectasia phenotype in humans, providing a mammalian model in which to study the pathophysiology of this pleiotropic disorder.
Higher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice. Although H2AX is not essential for irradiation-induced cell-cycle checkpoints, H2AX −/− mice were radiation sensitive, growth retarded, and immune deficient, and mutant males were infertile. These pleiotropic phenotypes were associated with chromosomal instability, repair defects, and impaired recruitment of Nbs1, 53bp1, and Brca1, but not Rad51, to irradiation-induced foci. Thus, H2AX is critical for facilitating the assembly of specific DNArepair complexes on damaged DNA.The first 120 amino acids of the H2AX and the H2A1/2 bulk isoprotein species exhibit a high degree of similarity, but H2AX carries a unique COOH-terminal tail that contains the * To whom correspondence should be addressed. andre_nussenzweig@nih.gov. HHS Public Access Author Manuscript Author ManuscriptAuthor ManuscriptAuthor Manuscript consensus phosphatidyl inositol 3-kinase (PI-3 kinase) motif that is activated by DSBs (1, 2). Phosphorylation of H2AX (γ-H2AX) is induced by external genotoxic agents (2, 3) and is activated at physiological sites of recombination in lymphocytes (4, 5) and germ cells (6). Several essential DNA-repair factors implicated in homologous recombination (HR) (e.g., Brca1, Brca2, and Rad51) or that participate in both HR and nonhomologous end-joining (NHEJ) (e.g., Rad50, Mre11, Nbs1) form immunofluorescent foci that colocalize with γ-H2AX (7). However, the precise relation between focus formation and DNA repair is not understood.To determine the physiological role of H2AX in mammalian cells, we produced a targeted disruption of mouse H2AX (Web fig. 1A) (5,8). H2AX −/− mice were born at the expected frequency, and absence of H2AX protein was confirmed by two-dimensional gel electrophoresis and Western blotting (Web fig. 1, B to E) (8). Despite the loss of H2AX, treatment with γ-irradiation resulted in normal phosphorylation of Nbs1 (Web fig. 1E) (8).We conclude that H2AX is not essential for survival, or for irradiation-induced phosphorylation of Nbs1.H2AX −/− mice were growth retarded (Web fig. 2) (8), and H2AX −/− mouse embryo fibroblasts (MEFs) proliferated poorly in vitro (Fig. 1A). The difference in the growth of MEFs was partly due to a decrease in the number of dividing cells in H2AX −/− cultures as determined by incorporation of bromodeoxyuridine (BrdU) into DNA. During a 24-hour labeling period, only 44% of passage 1 H2AX −/− MEFs were actively cycling, compared with 72% for the controls, and the mitotic index of H2AX −/− MEFs was at least 50% lower than in wild-type cultures (see below; Fig. 1, D and F). By passage 4, H2AX −/− MEFS accumulated nondividing giant cells, suggesting premature entry into senescence. With continual passage, both H2AX −/− and wild-type MEFs went through crisis, after wh...
We have generated a transgenic mouse with no white fat tissue throughout life. These mice express a dominant-negative protein, termed A-ZIP/F, under the control of the adipose-specific aP2 enhancer/promoter. This protein prevents the DNA binding of B-ZIP transcription factors of both the C/EBP and Jun families. The transgenic mice (named A-ZIP/F-1) have no white adipose tissue and dramatically reduced amounts of brown adipose tissue, which is inactive. They are initially growth delayed, but by week 12, surpass their littermates in weight. The mice eat, drink, and urinate copiously, have decreased fecundity, premature death, and frequently die after anesthesia. The physiological consequences of having no white fat tissue are profound. White adipose tissue (WAT) is the major organ for regulated storage of triglycerides for use as metabolic energy. WAT helps control energy homeostasis, including food intake, metabolic efficiency, and energy expenditure, via its secreted hormone, leptin, and possibly additional unknown hormones. The quantity of body fat varies widely in mammals, ranging from 2% to >50% of body mass, typically from 10% to 20% in mice and humans. Much of this variability can be observed within a single individual, highlighting the delicate balance of factors controlling fat deposition. The huge variation in fat mass is unlike that of any other organ in the body and is determined by both an individual's genetic background and environmental factors including diet and physical activity (Comuzzie and Allison 1998; Hill and Peters 1998). Excess body fat, or obesity, is a major health problem, particularly in America, increasing the risk of diabetes, hypertension, and coronary artery disease (Thomas 1995). The mechanisms by which obesity causes these diseases, however, are unclear. To understand better the contribution of adipose tissue to diabetes and metabolism, it would be valuable to examine a mouse with no adipose tissue. To this end, we produced a transgenic mouse with essentially no white adipose tissue and examined the contribution of WAT to energy metabolism, reproductive function, and disease susceptibility.Mutant mice with either increased or decreased levels of WAT have been reported. For example, two mutations that disrupt signaling between WAT and the brain (ob/ ob and db/db, affecting leptin and its receptor, respectively) cause an increase in WAT amount leading to diabetes (Coleman 1978;Zhang et al. 1994; Chen et al. 1996). These mice have increased food intake and decreased physical and sympathetic nerve activity, all contributing to obesity. Adipose-specific expression of a diphtheria toxigene resulted in mice with either a severe phenotype including neonatal death or a mild phenotype, characterized by resistance to induced obesity or delayed loss of WAT at 10 months (Ross et al. 1993;Burant et al. 1997). These results suggest that WAT may be an essential organ for life. At present, there are no mice, from either knockout or transgene technologies that are devoid of WAT throughout develop...
Hereditary hemochromatosis, characterized by iron overload in multiple organs, is one of the most common genetic disorders among Caucasians. Hepcidin, which is synthesized in the liver, plays important roles in iron overload syndromes. Here, we show that a Cre-loxP-mediated liver-specific disruption of SMAD4 results in markedly decreased hepcidin expression and accumulation of iron in many organs, which is most pronounced in liver, kidney, and pancreas. Transcript levels of genes involved in intestinal iron absorption, including Dcytb, DMT1, and ferroportin, are significantly elevated in the absence of hepcidin. We demonstrate that ectopic overexpression of SMAD4 activates the hepcidin promoter and is associated with epigenetic modification of histone H3 to a transcriptionally active form. Moreover, transcriptional activation of hepcidin is abrogated in SMAD4-deficient hepatocytes in response to iron overload, TGF-beta, BMP, or IL-6. Our study uncovers a novel role of TGF-beta/SMAD4 in regulating hepcidin expression and thus intestinal iron transport and iron homeostasis.
Histone H2AX becomes phosphorylated in chromatin domains flanking sites of DNA double-strand breakage associated with gamma-irradiation, meiotic recombination, DNA replication, and antigen receptor rearrangements. Here, we show that loss of a single H2AX allele compromises genomic integrity and enhances the susceptibility to cancer in the absence of p53. In comparison with heterozygotes, tumors arise earlier in the H2AX homozygous null background, and H2AX(-/-) p53(-/-) lymphomas harbor an increased frequency of clonal nonreciprocal translocations and amplifications. These include complex rearrangements that juxtapose the c-myc oncogene to antigen receptor loci. Restoration of the H2AX null allele with wild-type H2AX restores genomic stability and radiation resistance, but this effect is abolished by substitution of the conserved serine phosphorylation sites in H2AX with alanine or glutamic acid residues. Our results establish H2AX as genomic caretaker that requires the function of both gene alleles for optimal protection against tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.