Tumor-derived exosomes containing the tetraspanin Tspan8 can efficiently induce angiogenesis in tumors and tumor-free tissues. However, little information exists on exosome-endothelial cell (EC) interactions or the proangiogenic role of tetraspanins, which are a constitutive component of exosomes. In this study, we used a rat adenocarcinoma model (AS-Tspan8) to explore the effects of exosomal Tspan8 on angiogenesis. Tspan8 contributed to a selective recruitment of proteins and mRNA into exosomes, including CD106 and CD49d, which were implicated in exosome-EC binding and EC internalization. We found that EC internalized Tspan8-CD49d complex-containing exosomes. Exosome uptake induced vascular endothelial growth factor (VEGF)-independent regulation of several angiogenesis-related genes, including von Willebrand factor, Tspan8, chemokines CXCL5 and MIF, chemokine receptor CCR1, and, together with VEGF, VEGF receptor 2. EC uptake of Tspan8-CD49d complex-containing exosomes was accompanied by enhanced EC proliferation, migration, sprouting, and maturation of EC progenitors. Unraveling these new pathways of exosome-initiated EC regulation could provide new options for therapeutic interference with tumor-induced angiogenesis.
A new approach is presented which allows the in vivo visualization of individual chromosome territories in the nuclei of living human cells. The fluorescent thymidine analog Cy3-AP3-dUTP was microinjected into the nuclei of cultured human cells, such as human diploid fibroblasts, HeLa cells and neuroblastoma cells. The fluorescent analog was incorporated during S-phase into the replicating genomic DNA. Labelled cells were further cultivated for several cell cycles in normal medium. This well-known scheme yielded sister chromatid labelling. Random segregation of labelled and unlabelled chromatids into daughter nuclei resulted in nuclei exhibiting individual in vivo detectable chromatid territories. The territories were composed of subcompartments with diameters ranging between approximately 400 and 800 nm which we refer to as subchromosomal foci. Time-resolved in vivo studies demonstrated changes of positioning and shape of territories and subchromosomal foci. The hypothesis that subchromosomal foci persist as functionally distinct entities was supported by double labelling of chromatin with CldU and IdU, respectively, at early and late S-phase and subsequent cultivation of corresponding cells for 5-10 cell cycles before fixation and immunocytochemical detection. This scheme yielded segregated chromatid territories with distinctly separated subchromosomal foci composed of either early- or late-replicating chromatin. The size range of subchromosomal foci was similar after shorter (2 h) and longer (16 h) labelling periods and was observed in nuclei of both living and fixed cells, suggesting their structural identity. A possible functional relevance of chromosome territory compartmentalization into subchromosomal foci is discussed in the context of present models of interphase chromosome and nuclear architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.