SignificanceGenome editing, the introduction of precise changes in the genome, is revolutionizing our ability to decode the genome. Here we describe a simple method for genome editing in mammalian cells that takes advantage of an efficient mechanism for gene conversion that utilizes linear donors. We demonstrate that PCR fragments containing edits up to 1 kb require only 35-bp homology sequences to initiate repair of Cas9-induced double-stranded breaks in human cells and mouse embryos. We experimentally determine donor DNA design rules that maximize the recovery of edits without cloning or selection.
The RNA-guided DNA endonuclease Cas9 has emerged as a powerful new tool for genome engineering. Cas9 creates targeted double-strand breaks (DSBs) in the genome. Knock-in of specific mutations (precision genome editing) requires homology-directed repair (HDR) of the DSB by synthetic donor DNAs containing the desired edits, but HDR has been reported to be variably efficient. Here, we report that linear DNAs (single and double-stranded) engage in a high-efficiency HDR mechanism that requires only ~35 nucleotides of homology with the targeted locus to introduce edits ranging from 1 to 1000 nucleotides. We demonstrate the utility of linear donors by introducing fluorescent protein tags in human cells and mouse embryos using PCR fragments. We find that repair is local, polarity-sensitive, and prone to template switching, characteristics that are consistent with gene conversion by synthesis-dependent strand-annealing (SDSA). Our findings enable rational design of synthetic donor DNAs for efficient genome editing.
On the basis of our observation that the biaryl substituent of iminopyrimidinone 7 must be in a pseudoaxial conformation to occupy the contiguous S1-S3 subsites of BACE1, we have designed a novel fused bicyclic iminopyrimidinone scaffold intended to favor this bioactive conformation. Strategic incorporation of a nitrogen atom in the new constrained ring allowed us to develop SAR around the S2' binding pocket and ultimately resulted in analogues with low nanomolar potency for BACE1. In particular, optimization of the prime side substituent led to major improvements in potency by displacement of two conserved water molecules from a region near S2'. Further optimization of the pharmacokinetic properties of this fused pyrrolidine series, in conjunction with facile access to a rat pharmacodynamic model, led to identification of compound 43, which is an orally active, brain penetrant inhibitor that reduces Aβ(40) in the plasma, CSF, and cortex of rats in a dose-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.