Background The recent emergence of SARS-CoV-2 lead to a current pandemic of unprecedented scale. Though diagnostic tests are fundamental to the ability to detect and respond, overwhelmed healthcare systems are already experiencing shortages of reagents associated with this test, calling for a lean immediately-applicable protocol. Methods RNA extracts of positive samples were tested for the presence of SARS-CoV-2 using RT-qPCR, alone or in pools of different sizes (2-, 4-, 8- ,16-, 32- and 64-sample pools) with negative samples. Transport media of additional 3 positive samples were also tested when mixed with transport media of negative samples in pools of 8. Results A single positive sample can be detected in pools of up to 32 samples, using the standard kits and protocols, with an estimated false negative rate of 10%. Detection of positive samples diluted in even up to 64 samples may also be attainable, though may require additional amplification cycles. Single positive samples can be detected when pooling either after or prior to RNA extraction. Conclusions As it uses the standard protocols, reagents and equipment, this pooling method can be applied immediately in current clinical testing laboratories. We hope that such implementation of a pool test for COVID-19 would allow expanding current screening capacities thereby enabling the expansion of detection in the community, as well as in close organic groups, such as hospital departments, army units, or factory shifts.
Abstract-Background:Pompe disease is a progressive metabolic neuromuscular disorder resulting from deficiency of lysosomal acid ␣-glucosidase (GAA). Infantile-onset Pompe disease is characterized by cardiomyopathy, respiratory and skeletal muscle weakness, and early death. The safety and efficacy of recombinant human (rh) GAA were evaluated in 18 patients with rapidly progressing infantile-onset Pompe disease. Methods: Patients were diagnosed at 6 months of age and younger and exhibited severe GAA deficiency and cardiomyopathy. Patients received IV infusions of rhGAA at 20 mg/kg (n ϭ 9) or 40 mg/kg (n ϭ 9) every other week. Analyses were performed 52 weeks after the last patient was randomized to treatment. Results: All patients (100%) survived to 18 months of age. A Cox proportional hazards analysis demonstrated that treatment reduced the risk of death by 99%, reduced the risk of death or invasive ventilation by 92%, and reduced the risk of death or any type of ventilation by 88%, as compared to an untreated historical control group. There was no clear advantage of the 40-mg/kg dose with regard to efficacy. Eleven of the 18 patients experienced 164 infusion-associated reactions; all were mild or moderate in intensity. Conclusions: Recombinant human acid ␣-glucosidase is safe and effective for treatment of infantile-onset Pompe disease. Eleven patients experienced adverse events related to treatment, but none discontinued. The young age at which these patients initiated therapy may have contributed to their improved response compared to previous trials with recombinant human acid ␣-glucosidase in which patients were older.
IMPORTANCEThe efficacy and safety profile of SARS-CoV-2 vaccines have been acquired from phase 3 studies; however, patients with cancer were not represented in these trials. Owing to the recommendation to prioritize high-risk populations for vaccination, further data are warranted.OBJECTIVE To evaluate the use and safety of the BNT162b2 vaccine in patients undergoing treatment for cancer. DESIGN, SETTING, AND PARTICIPANTSIn January 2021, mass SARS-CoV-2 vaccination of high-risk populations, including patients with cancer, was initiated in Israel. This cohort study prospectively enrolled and followed up patients with cancer and healthy participants between January 15 and March 14, 2021. The study was conducted at the Division of Oncology of Rambam Health Care Campus, the major tertiary (referral) medical center of northern Israel. Participants included 232 patients with cancer who were receiving active treatment after the first and second doses of the BNT162b2 vaccine and 261 healthy, age-matched health care workers who served as controls.EXPOSURES Serum samples were collected after each vaccine dose and in cases of seronegativity. Questionnaires regarding sociodemographic characteristics and adverse reactions were administered at serum collection. A regulatory agencies-approved assay was used to assess IgG at all time points. Patients' electronic medical records were reviewed for documentation of COVID-19 infection and results of blood cell counts, liver enzyme levels, and imaging studies. MAIN OUTCOMES AND MEASURESSeroconversion rate after the first and second doses of the BNT162b2 vaccine and documented COVID-19 infection. RESULTSOf the 232 patients undergoing treatment for cancer, 132 were men (57%); mean (SD) age was 66 (12.09) years. After the first dose of BNT162b2 vaccine, 29% (n = 25) patients were seropositive compared with 84% (n = 220) of the controls (P < .001). After the second dose, the seropositive rate reached 86% (n = 187) in the patients. Testing rate ratios per 1000 person-days after the first dose were 12.5 (95% CI, 3.4-45.7) for the patients and 48.5 (95% CI, 37.2-63.2) for the controls. Patients undergoing chemotherapy showed reduced immunogenicity (odds ratio, 0.41; 95% CI, 0.17-0.98). In seronegative patients, the rate of documented absolute leukopenia reached 39%. No COVID-19 cases were documented throughout the study period; however, 2 cases in the patient cohort were noted immediately after the first dose. Reported adverse events were similar to data in former trials comprising mostly healthy individuals. CONCLUSIONS AND RELEVANCEIn this cohort study, the SARS-CoV-2 BNT162b2 vaccine appeared to be safe and achieve satisfactory serologic status in patients with cancer. There was a pronounced lag in antibody production compared with the rate in noncancer controls; however, seroconversion occurred in most patients after the second dose. Future real-world data are warranted to determine the long-term efficacy of the vaccine with regard to type of anticancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.