We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or $\Delta L\sim 0.56$ Δ L ∼ 0.56 ) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at $L\sim 5-7$ L ∼ 5 − 7 at dusk, while a smaller subset exists at $L\sim 8-12$ L ∼ 8 − 12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an $L$ L -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of $\sim 1.45$ ∼ 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.
Ultra-low-frequency (ULF, 0.001-1 Hz) perturbations are important aspect of the dynamics in the inner magnetosphere: They are responsible for radial transport (diffusion) of high-energy electrons and for energizing the ionosphere with field-aligned currents. This study is devoted to properties of ULF perturbations generated at the magnetopause, their propagation into the inner magnetosphere, and their modulation of whistler-mode very-low-frequency (VLF) waves. Taking advantage of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission configuration in 2019, we investigate ULF perturbations simultaneously captured by three spacecraft at different distances from the magnetopause. Combining ground-based and THEMIS measurements of ULF perturbations to separate temporal and spatial variations of their properties, we show that their intensity decays exponentially with distance from the magnetopause as close as the geostationary orbit. Near the magnetopause ULF perturbations can modulate whistler-mode (VLF) waves effectively: Close to the magnetopause, VLF wave bursts have the same periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geostationary orbit to L ∼ 12), including the outer radiation belts, is significantly influenced by ULF perturbations excited by magnetopause dynamic responses to the solar wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.