HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ~2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.
Next-generation sequencing of antibody transcripts from HIV-1-infected individuals with broadly neutralizing antibodies could provide an efficient means for identifying somatic variants and characterizing their lineages. Here, we used 454 pyrosequencing and identity/divergence grid sampling to analyze heavy-and lightchain sequences from donor N152, the source of the broadly neutralizing antibody 10E8. We identified variants with up to 28% difference in amino acid sequence. Heavy-and light-chain phylogenetic trees of identified 10E8 variants displayed similar architectures, and 10E8 variants reconstituted from matched and unmatched phylogenetic branches displayed significantly lower autoreactivity when matched. To test the generality of phylogenetic pairing, we analyzed donor International AIDS Vaccine Initiative 84, the source of antibodies PGT141-145. Heavy-and light-chain phylogenetic trees of PGT141-145 somatic variants also displayed remarkably similar architectures; in this case, branch pairings could be anchored by known PGT141-145 antibodies. Altogether, our findings suggest that phylogenetic matching of heavy and light chains can provide a means to approximate natural pairings.antibody-affinity maturation | antibodyomics | B-cell ontogeny | DNA sequencing | immunological tolerance
BackgroundAlthough diarrheal illnesses are recognized as both a cause and effect of undernutrition, evidence for the effect of specific enteropathogens on early childhood growth remains limited. We estimated the effects of undernutrition as a risk factor for campylobacteriosis, as well as associations between symptomatic and asymptomatic Campylobacter infections and growth.Methodology/Principal FindingsUsing data from a prospective cohort of 442 children aged 0–72 months, the effect of nutritional status on the incidence of Campylobacter infection was estimated using uni- and multivariate Poisson models. Multivariate regression models were developed to evaluate the effect of Campylobacter infection on weight gain and linear growth. Overall, 8.3% of diarrheal episodes were associated with Campylobacter (crude incidence rate = 0.37 episodes/year) and 4.9% of quarterly asymptomatic samples were Campylobacter positive. In univariate models, the incidence of Campylobacter infection was marginally higher in stunted than non-stunted children (IRR 1.270, 95% CI (0.960, 1.681)(p = 0.095). When recent diarrheal burdens were included in the analysis, there was no difference in risk between stunted and unstunted children. Asymptomatic and symptomatic Campylobacter infections were associated with reduced weight gain over a three-month period (65.5 g (95% CI: −128.0, −3.0)(p = 0.040) and 43.9 g (95% CI:−87.6, −1.0)(p = 0.049) less weight gain, respectively). Symptomatic Campylobacter infections were only marginally associated with reduced linear growth over a nine month period (−0.059 cm per episode, 95% CI: −0.118, 0.001)(p = 0.054), however relatively severe episodes were associated with reduced linear growth (−0.169 cm/episode, 95% CI −0.310, −0.028)(p = 0.019).Conclusions/SignificanceOur findings suggest that Campylobacter is not as benign as commonly assumed, and that there is evidence to support expanding the indications for antibiotic therapy in campylobacteriosis in children.
Purpose: Transforming growth factor β (TGFβ) is a pleiotropic cytokine that affects tumor growth, metastasis, stroma, and immune response. We investigated the therapeutic efficacy of anti-TGFβ receptor II (TGFβ RII) antibody in controlling metastasis and tumor growth as well as enhancing antitumor immunity in preclinical tumor models.Experimental Design: We generated neutralizing antibodies to TGFβ RII and assessed the antibody effects on cancer, stroma, and immune cells in vitro. The efficacy and mechanism of action of the antibody as monotherapy and in combination with chemotherapy in suppression of primary tumor growth and metastasis were evaluated in several tumor models.Results: Anti-TGFβ RII antibody blocked TGFβ RII binding to TGFβ 1, 2, and 3, and attenuated the TGFβ-mediated activation of downstream Smad2 kinase, invasion of cancer cells, motility of endothelial and fibroblast cells, and induction of immunosuppressive cells. Treatment with the antibody significantly suppressed primary tumor growth and metastasis and enhanced natural killer and CTL activity in tumorbearing mice. Immunohistochemistry analysis showed cancer cell apoptosis and massive necrosis, and increased tumor-infiltrating T effector cells and decreased tumor-infiltrating Gr-1+ myeloid cells in the antibody-treated tumors. Fluorescence-activated cell sorting analysis indicated the significant reduction of peripheral Gr-1+/CD11b+ myeloid cells in treated animals. Concomitant treatment with the cytotoxic agent cyclophosphamide resulted in a significantly increased antitumor efficacy against primary tumor growth and metastasis.Conclusions: These preclinical data provide a foundation to support using anti-TGFβ RII antibody as a therapeutic agent for TGFβ RII-dependent cancer with metastatic capacity.
BackgroundCampylobacter jejuni and Campylobacter coli are food-borne pathogens of great importance and feature prominently in the etiology of developing world enteritis and travellers’ diarrhoea. Increasing antimicrobial resistant Campylobacter prevalence has been described globally, yet data from Peru is limited. Our objective was to describe the prevalence trends of fluoroquinolone and macrolide-resistant C. jejuni and C. coli stool isolates from three regions in Peru over a ten-year period.MethodsSurveillance for enteric pathogens was conducted in Lima, Iquitos and Cusco between 2001 and 2010. Campylobacter stool isolates were tested for susceptibilities to ciprofloxacin, azithromycin and erythromycin. Susceptibilities were reviewed for 4652 isolates from Lima ( n = 3419), Iquitos ( n = 625) and Cusco ( n = 608).ResultsComparing the study periods of 2001-2005 and 2006-2010, prevalence of ciprofloxacin-resistant C. jejuni isolates rose in the study areas of Lima (73.1% to 89.8%, p < 0.001) and Iquitos (24.1% to 48.9%, p < 0.001). Ciprofloxacin-resistant C. coli rates also increased in Lima (48.1% to 87.4%, p < 0.001) and Cusco (10.0% to 65.9%, p = 0.005). Small but significant increases in azithromycin-resistant and erythromycin-resistant C. jejuni prevalence were noted in Iquitos (2.2% to 14.9%, p < 0.001; 3.2% to 14.9%, p = 0.002), and erythromycin-resistant C. coli rates increased in Lima (0.0% to 5.3%, p = 0.038). The prevalence of C. jejuni isolates resistant to both ciprofloxacin and azithromycin increased in Iquitos (0.3% to 14.9%, p < 0.001) and Lima (0.3% to 1.6%, p = 0.011), and prevalence of C. jejuni isolates resistant to both ciprofloxacin and erythromycin rose in Iquitos (0.0% to 14.9%, p < 0.001). Ciprofloxacin and erythromycin resistant C. coli prevalence increased in Lima (0.0% to 5.3%, p = 0.034).ConclusionsThese results have implications for the empirical management of enterocolitis in Peru. Ongoing surveillance is essential to guide appropriate antimicrobial use in this setting. Local epidemiological studies to explore the relationship between increasing antimicrobial resistance and agricultural or human antibiotic use may be valuable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.