Supramolecular triads have been constructed by using covalently linked zinc porphyrin−ferrocene(s) dyads, self-assembled via axial coordination to either pyridine- or imidazole-appended fulleropyrrolidine. These triads were characterized by optical absorption, computational, and electrochemical methods. The calculated binding constants (K) revealed stable complexation and suggested the existence of intermolecular interactions between the ferrocene and fullerene entities. Accordingly, the optimized geometry obtained by ab initio B3LYP/3-21G(*) methods revealed closely spaced ferrocene and fullerene entities in the studied triads. Photoinduced charge-separation and charge-recombination processes were examined in the dyads and triads by means of time-resolved transient absorption and fluorescence lifetime measurements. In the case of zinc porphyrin−ferrocene(s) dyads, upon photoexcitation, efficient (ΦCS = 0.98) to moderate (ΦCS = 0.54) amounts of electron transfer from the ferrocene to the singlet excited zinc porphyrin occurred depending upon the nature of the spacer, resulting in the formation of the Fc+−ZnP•- radical pair. Upon formation of the supramolecular triads by axial coordination of fulleropyrrolidines, the initial electron transfer originated either from or to the singlet excited zinc porphyrin, resulting ultimately in the formation of the charge-separated states of Fc+−ZnP:C60 •- with high quantum efficiency. The calculated ratio of k CS/k CR from the kinetic data was found to be ∼100, indicating a moderate amount of charge stabilization in the studied supramolecular triads.
The Free-Electron Laser for Infrared Experiments (FELIX) was used to study the wavelength-resolved multiple photon photodissociation of discrete, gas-phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands and are comparable to solution-phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm(-1) higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity.
UO(2) (+)-solvent complexes having the general formula [UO(2)(ROH)](+) (R=H, CH(3), C(2)H(5), and n-C(3)H(7)) are formed using electrospray ionization and stored in a Fourier transform ion cyclotron resonance mass spectrometer, where they are isolated by mass-to-charge ratio, and then photofragmented using a free-electron laser scanning through the 10 mum region of the infrared spectrum. Asymmetric O=U=O stretching frequencies (nu(3)) are measured over a very small range [from approximately 953 cm(-1) for H(2)O to approximately 944 cm(-1) for n-propanol (n-PrOH)] for all four complexes, indicating that the nature of the alkyl group does not greatly affect the metal centre. The nu(3) values generally decrease with increasing nucleophilicity of the solvent, except for the methanol (MeOH)-containing complex, which has a measured nu(3) value equal to that of the n-PrOH-containing complex. The nu(3) frequency values for these U(V) complexes are about 20 cm(-1) lower than those measured for isoelectronic U(VI) ion-pair species containing analogous alkoxides. nu(3) values for the U(V) complexes are comparable to those for the anionic [UO(2)(NO(3))(3)](-) complex, and 40-70 cm(-1) lower than previously reported values for ligated uranyl(VI) dication complexes. The lower frequency is attributed to weakening of the O=U=O bonds by repulsion related to reduction of the U metal centre, which increases electron density in the antibonding pi* orbitals of the uranyl moiety. Computational modelling of the nu(3) frequencies using the B3LYP and PBE functionals is in good agreement with the IRMPD measurements, in that the calculated values fall in a very small range and are within a few cm(-1) of measurements. The values generated using the LDA functional are slightly higher and substantially overestimate the trends. Subtleties in the trend in nu(3) frequencies for the H(2)O-MeOH-EtOH-n-PrOH series are not reproduced by the calculations, specifically for the MeOH complex, which has a lower than expected value.
Raman and infrared spectra of trimethylsulfonium dicyanamide [(CH(3))(3)SN(CN)(2)] are reported and accurately reproduced by DFT methods (B3LYP and B3PW91), MP2, and MP3, and to a lesser extent by the RHF method. The (CH(3))(3)SN(CN)(2) ionic liquid forms two isomeric dimers that are of cyclic structure, one of which is 13 kcal/mol lower in energy than the other. Both isomeric cyclic pairs (versions 1 and 2), [(CH(3))(3)SN(CN)(2)](2), have the potential to further combine and form a common structure containing four pairs of (CH(3))(3)SN(CN)(2). This structure can then conceivably undergo a stacking procedure to form extended ionic liquid nanotubes of eight ionic liquids, [(CH(3))(3)SN(CN)(2)](8). The possible formation of gas phase ionic liquid clusters of two, four, and eight trimethylsulfonium dicyanamide ionic liquids is supported by highly exergonic free energy changes obtained from B3LYP/(6-311+G(d,p)) density functional calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.