Despite the successes provided by vaccination, many challenges still exist with respect to controlling new and re-emerging infectious diseases. Innovative vaccine platforms composed of adaptable adjuvants able to appropriately modulate immune responses, induce long-lived immunity in a single dose, and deliver immunogens in a safe and stable manner via multiple routes of administration are needed. This work describes the development of a novel biodegradable polyanhydride nanoparticle-based vaccine platform administered as a single intranasal dose that induced long-lived protective immunity against respiratory disease caused by Yesinia pestis, the causative agent of pneumonic plague. Relative to the responses induced by the recombinant protein F1-V alone and MPLA-adjuvanted F1-V, the nanoparticle-based vaccination regimen induced an immune response that was characterized by high titer and high avidity IgG1 anti-F1-V antibody that persisted for at least 23 weeks post-vaccination. After challenge, no Y. pestis were recovered from the lungs, livers, or spleens of mice vaccinated with the nanoparticle-based formulation and histopathological appearance of lung, liver, and splenic tissues from these mice post-vaccination was remarkably similar to uninfected control mice.
For humans, companion animals, and food producing animals, vaccination has been touted as the most successful medical intervention for the prevention of disease in the twentieth century. However, vaccination is not without problems. With the development of new and less reactogenic vaccine antigens, which take advantage of molecular recombinant technologies, also comes the need for more effective adjuvants that will facilitate the induction of adaptive immune responses. Furthermore, current vaccine adjuvants are successful at generating humoral or antibody mediated protection but many diseases currently plaguing humans and animals, such as tuberculosis and malaria, require cell mediated immunity for adequate protection. A comprehensive discussion is presented of current vaccine adjuvants, their effects on the induction of immune responses, and vaccine adjuvants that have shown promise in recent literature.
Targeting pathogen recognition receptors on dendritic cells (DCs) offers the advantage of triggering specific signaling pathways to induce a tailored and robust immune response. In this work, we describe a novel approach to targeted antigen delivery by decorating the surface of polyanhydride nanoparticles with specific carbohydrates to provide "pathogen-like" properties that ensure nanoparticles engage C-type lectin receptors on DCs. The surface of polyanhydride nanoparticles was functionalized by covalent linkage of dimannose and lactose residues using an amine-carboxylic acid coupling reaction. Coculture of functionalized nanoparticles with bone marrow-derived DCs significantly increased cell surface expression of MHC II, the T cell costimulatory molecules CD86 and CD40, the C-type lectin receptor CIRE and the mannose receptor CD206 over the nonfunctionalized nanoparticles. Both nonfunctionalized and functionalized nanoparticles were efficiently internalized by DCs, indicating that internalization of functionalized nanoparticles was necessary but not sufficient to activate DCs. Blocking the mannose and CIRE receptors prior to the addition of functionalized nanoparticles to the culture inhibited the increased surface expression of MHC II, CD40 and CD86. Together, these data indicate that engagement of CIRE and the mannose receptor is a key mechanism by which functionalized nanoparticles activate DCs. These studies provide valuable insights into the rational design of targeted nanovaccine platforms to induce robust immune responses and improve vaccine efficacy. The use of vaccine adjuvants to activate the innate immune system is crucial to vaccine effectiveness. 1 Adjuvants can be used to enhance the efficacy of single dose vaccines and reduce the required antigen dose. The use of biodegradable polymer nanoparticles as vaccine delivery vehicles allows for effective delivery of payloads by parental or mucosal administration by protecting the antigen from harsh physiological conditions and enabling transport across biological barriers (e.g., mucus membranes). 2 Polyanhydride nanoparticles have shown excellent potential as vaccine carriers. 3À6 Encapsulation of protein antigens into polyanhydride particles stabilizes them and provides sustained azntigen release; 4,7 these particles also enhance the immune response by acting as an adjuvant. 3 Dendritic cells (DCs) are antigen presenting cells (APCs) that play a major role in connecting the innate and adaptive immune systems, a key step to inducing protective immunity. 8 DCs can sense and internalize antigen by a variety of mechanisms that trigger DC maturation and direct further interactions with other immune cells, including naive T cells. 1,9,10 Pattern recognition receptors (PRRs) on DCs detect the presence of a potential threat by interacting with pathogen-associated molecular patterns (PAMPs). 10,11 In particular, C-type lectin receptors (CLRs) are PRRs with highly conserved carbohydrate-recognition domains that bind sugar moieties (e.g., mannose, fuco...
The present studies were designed to evaluate the adjuvant activity of polyanhydride microparticles prepared in the absence of additional stabilizers, excipients, or immune modulators. Microparticles composed of varying ratios of either 1,6-bis(p-carboxyphenoxy)hexane (CPH) and sebacic acid (SA) or 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and CPH were added to in vitro cultures of bone marrow-derived dendritic cells (DCs). Microparticles were efficiently and rapidly phagocytosed by DCs in the absence of opsonization and without centrifugation or agitation. Within 2 h, internalized particles were rapidly localized to an acidic, phagolysosomal compartment. By 48 h, only a minor reduction in microparticle size was observed in the phagolysosomal compartment, indicating minimal particle erosion consistent with being localized within an intracellular microenvironment favoring particle stability. Polyanhydride microparticles increased DC surface expression of MHC II, the co-stimulatory molecules CD86 and CD40, and the C-type lectin CIRE (murine DC-SIGN; CD209). In addition, microparticle stimulation of DCs also enhanced secretion of the cytokines IL-12p40 and IL-6, a phenomenon found to be dependent on polymer chemistry. DCs cultured with polyanhydride microparticles and ovalbumin induced polymer chemistry-dependent antigen-specific proliferation of both CD4+ OT-II and CD8+ OT-I T cells. These data indicate that polyanhydride particles can be tailored to take advantage of the potential plasticity of the immune response, resulting in the ability to induce immune protection against many types of pathogens.
The release kinetics and stability of ovalbumin encapsulated into polyanhydride microspheres with varying chemistries were studied. Polymers based on the anhydride monomers sebacic acid (SA), 1,6-bis(p-carboxyphenoxy)hexane (CPH), and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) were utilized. Microspheres were fabricated using two non-aqueous methods: a solid/oil/oil double emulsion technique and cryogenic atomization. The studies showed that the two fabrication methods did not significantly affect the release kinetics of ovalbumin, even though the burst release of the protein was a function of the fabrication method and the polymer chemistry. Antigenic stability of ovalbumin released from microspheres prepared by cryogenic atomization was studied by western blot analysis. These studies indicate that the amphiphilic CPTEG:CPH polyanhydrides preserved protein structure and enhanced protein stability by preserving the immunological epitopes of released protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.