Importance: India has taken strong and early public health measures for arresting the spread of the COVID-19 epidemic. With only 536 COVID-19 cases and 11 fatalities, India -a democracy of 1.34 billion people -took the historic decision of a 21-day national lockdown on March 25. The lockdown was further extended to May 3rd, soon after the analysis of this paper was completed.Objective: To study the short-and long-term impact of an initial 21-day lockdown on the total number of COVID-19 cases in India compared to other less severe non-pharmaceutical interventions using epidemiological forecasting models and Bayesian estimation algorithms; to compare effects of hypothetical durations of lockdown from an epidemiological perspective; to study alternative explanations for slower growth rate of the virus outbreak in India, including exploring the association of the number of cases and average monthly temperature; and finally, to outline the pivotal role of reliable and transparent data, reproducible data science methods, tools and products as we reopen the country and prepare for a post lock-down phase of the pandemic. Design, Setting, and Participants:We use the daily data on the number of COVID-19 cases, of recovered and of deaths from March 1 until April 7, 2020 from the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Additionally, we use COVID-19 incidence counts data from Kaggle and the monthly average temperature of major cities across the world from Wikipedia. Main Outcome and Measures:The current time-series data on daily proportions of cases and removed (recovered and death combined) from India are analyzed using an extended version of the standard SIR (susceptible, infected, and removed) model. The eSIR model incorporates timevarying transmission rates that help us predict the effect of lockdown compared to other hypothetical interventions on the number of cases at future time points. A Markov Chain Monte Carlo implementation of this model provided predicted proportions of the cases at future time points along with credible intervals (CI). Results:Our predicted cumulative number of COVID-19 cases in India on April 30 assuming a 1-week delay in people's adherence to a 21-day lockdown (March 25 -April 14) and a gradual, moderate resumption of daily activities after April 14 is 9,181 with upper 95% CI of 72,245. In comparison, the predicted cumulative number of cases under "no intervention" and "social distancing and travel bans without lockdown" are 358 thousand and 46 thousand (upper 95% CI of nearly 2.3 million and 0.3 million) respectively. An effective lockdown can prevent roughly 343 thousand (upper 95% CI 1.8 million) and 2.4 million (upper 95% CI 38.4 million) COVID-19 cases nationwide compared to social distancing alone by May 15 and June 15, respectively. When comparing a 21-day lockdown with a hypothetical lockdown of longer duration, we find that 28-, 42-, and 56-day lockdowns can approximately prevent 238 thousan...
We develop a health informatics toolbox that enables timely analysis and evaluation of the timecourse dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are generated from the underlying infection dynamics governed by a Markov Susceptible-Infectious-Removed (SIR) infectious disease process. We extend the SIR model to incorporate various types of time-varying quarantine protocols, including government-level 'macro' isolation policies and community-level 'micro' social distancing (e.g. self-isolation and self-quarantine) measures. We develop a calibration procedure for underreported infected cases. This toolbox provides forecasts, in both online and offline forms, as well as simulating the overall dynamics of the epidemic. An R software package is made available for the public, and examples on the use of this software are illustrated. Some possible extensions of our novel epidemiological models are discussed.
Introduction India has been under four phases of a national lockdown from March 25 to May 31 in response to the COVID-19 pandemic. Unmasking the state-wise variation in the effect of the nationwide lockdown on the progression of the pandemic could inform dynamic policy interventions towards containment and mitigation. Methods Using data on confirmed COVID-19 cases across 20 states that accounted for more than 99% of the cumulative case counts in India till May 31, 2020, we illustrate the masking of state-level trends and highlight the variations across states by presenting evaluative evidence on some aspects of the COVID-19 outbreak: case-fatality rates, doubling times of cases, effective reproduction numbers, and the scale of testing. Results The estimated effective reproduction number R for India was 3.36 (95% confidence interval (CI): [3.03, 3.71]) on March 24, whereas the average of estimates from May 25 - May 31 stands at 1.27 (95% CI: [1.26, 1.28]). Similarly, the estimated doubling time across India was at 3.56 days on March 24, and the past 7-day average for the same on May 31 is 14.37 days. The average daily number of tests have increased from 1,717 (March 19-25) to 131,772 (May 25-31) with an estimated testing shortfall of 4.58 million tests nationally by May 31. However, various states exhibit substantial departures from these national patterns. Conclusions Patterns of change over lockdown periods indicate the lockdown has been effective in slowing the spread of the virus nationally. The COVID-19 outbreak in India displays large state-level variations and identifying these variations can help in both understanding the dynamics of the pandemic and formulating effective public health interventions. Our framework offers a holistic assessment of the pandemic across Indian states and union territories along with a set of interactive visualization tools that are daily updated at covind19.org.
India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness.
Objective There has been much discussion and debate around the underreporting of COVID-19 infections and deaths in India. In this short report we first estimate the underreporting factor for infections from publicly available data released by the Indian Council of Medical Research on reported number of cases and national seroprevalence surveys. We then use a compartmental epidemiologic model to estimate the undetected number of infections and deaths, yielding estimates of the corresponding underreporting factors. We compare the serosurvey based ad hoc estimate of the infection fatality rate (IFR) with the model-based estimate. Since the first and second waves in India are intrinsically different in nature, we carry out this exercise in two periods: the first wave (April 1, 2020–January 31, 2021) and part of the second wave (February 1, 2021–May 15, 2021). The latest national seroprevalence estimate is from January 2021, and thus only relevant to our wave 1 calculations. Results Both wave 1 and wave 2 estimates qualitatively show that there is a large degree of “covert infections” in India, with model-based estimated underreporting factor for infections as 11.11 (95% credible interval (CrI) 10.71–11.47) and for deaths as 3.56 (95% CrI 3.48–3.64) for wave 1. For wave 2, underreporting factor for infections escalate to 26.77 (95% CrI 24.26–28.81) and to 5.77 (95% CrI 5.34–6.15) for deaths. If we rely on only reported deaths, the IFR estimate is 0.13% for wave 1 and 0.03% for part of wave 2. Taking underreporting of deaths into account, the IFR estimate is 0.46% for wave 1 and 0.18% for wave 2 (till May 15). Combining waves 1 and 2, as of May 15, while India reported a total of nearly 25 million cases and 270 thousand deaths, the estimated number of infections and deaths stand at 491 million (36% of the population) and 1.21 million respectively, yielding an estimated (combined) infection fatality rate of 0.25%. There is considerable variation in these estimates across Indian states. Up to date seroprevalence studies and mortality data are needed to validate these model-based estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.