The heterogeneity of the biologic response of COPD exacerbations can be defined. Sputum IL-1β, serum CXCL10, and peripheral eosinophils are biomarkers of bacteria-, virus-, or eosinophil-associated exacerbations of COPD. Whether phenotype-specific biomarkers can be applied to direct therapy warrants further investigation.
Rationale: Exacerbations of chronic obstructive pulmonary disease (COPD) and responses to treatment are heterogeneous. Objectives: Investigate the usefulness of blood eosinophils to direct corticosteroid therapy during exacerbations. Methods: Subjects with COPD exacerbations were entered into a randomized biomarker-directed double-blind corticosteroid versus standard therapy study. Subjects in the standard arm received prednisolone for 2 weeks, whereas in the biomarker-directed arm, prednisolone or matching placebo was given according to the blood eosinophil count biomarker. Both study groups received antibiotics. Blood eosinophils were measured in the biomarker-directed and standard therapy arms to define biomarker-positive and -negative exacerbations (blood eosinophil count . and < 2%, respectively). The primary outcome was to determine noninferiority in health status using the chronic respiratory questionnaire (CRQ) and in the proportion of exacerbations associated with a treatment failure between subjects allocated to the biomarker-directed and standard therapy arms. Measurements and Main Results: There were 86 and 80 exacerbations in the biomarker-directed and standard treatment groups, respectively. In the biomarker-directed group, 49% of the exacerbations were not treated with prednisolone. CRQ improvement after treatment in the standard and biomarker-directed therapy groups was similar (0.8 vs. 1.1; mean difference, 0.3; 95% confidence interval, 0.0-0.6; P ¼ 0.05). There was a greater improvement in CRQ in biomarker-negative exacerbations given placebo compared with those given prednisolone (mean difference, 0.45; 95% confidence interval, 0.01-0.90; P ¼ 0.04). In biomarker-negative exacerbations, treatment failures occurred in 15% given prednisolone and 2% of those given placebo (P ¼ 0.04). Conclusions: The peripheral blood eosinophil count is a promising biomarker to direct corticosteroid therapy during COPD exacerbations, but larger studies are required. Clinical trial registered with www.controlled-trials.com (ISRCTN 92422949).Keywords: chronic obstructive pulmonary disease; exacerbations; prednisolone; infection; eosinophils Acute exacerbations of chronic obstructive pulmonary disease (COPD) are associated with substantial morbidity and mortality (1, 2) and are heterogeneous with respect to inflammation (3, 4) and etiology (5-7). Although primarily associated with asthma, eosinophilic airway inflammation is present in some patients with COPD (8). Previous studies have shown that a sputum eosinophilia is associated with a positive response to corticosteroid treatment in stable COPD (9-11), and the sputum eosinophil count can be used to titrate corticosteroid therapy to reduce exacerbations of COPD (12).Current guidelines advocate the use of systemic corticosteroids during acute exacerbations of COPD because of improvements in the rate of recovery (13,14); this is despite being associated with significant side effects (15) and with limited benefits in reducing mortality (14). Increased eosinophilic air...
BackgroundTuberculous sputum provides a sample of bacilli that must be eliminated by chemotherapy and that may go on to transmit infection. A preliminary observation that Mycobacterium tuberculosis cells contain triacylglycerol lipid bodies in sputum, but not when growing in vitro, led us to investigate the extent of this phenomenon and its physiological basis.Methods and FindingsMicroscopy-positive sputum samples from the UK and The Gambia were investigated for their content of lipid body–positive mycobacteria by combined Nile red and auramine staining. All samples contained a lipid body–positive population varying from 3% to 86% of the acid-fast bacilli present. The recent finding that triacylglycerol synthase is expressed by mycobacteria when they enter in vitro nonreplicating persistence led us to investigate whether this state was also associated with lipid body formation. We found that, when placed in laboratory conditions inducing nonreplicating persistence, two M. tuberculosis strains had lipid body levels comparable to those found in sputum. We investigated these physiological findings further by comparing the M. tuberculosis transcriptome of growing and nonreplicating persistence cultures with that obtained directly from sputum samples. Although sputum has traditionally been thought to contain actively growing tubercle bacilli, our transcript analyses refute the hypothesis that these cells predominate. Rather, they reinforce the results of the lipid body analyses by revealing transcriptional signatures that can be clearly attributed to slowly replicating or nonreplicating mycobacteria. Finally, the lipid body count was highly correlated (R2 = 0.64, p < 0.03) with time to positivity in diagnostic liquid cultures, thereby establishing a direct link between this cytological feature and the size of a potential nonreplicating population.ConclusionAs nonreplicating tubercle bacilli are tolerant to the cidal action of antibiotics and resistant to multiple stresses, identification of this persister-like population of tubercle bacilli in sputum presents exciting and tractable new opportunities to investigate both responses to chemotherapy and the transmission of tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.