Benign uterine leiomyomata are the most common tumors in women of reproductive age. One recurring chromosomal aberration in uterine leiomyomata is rearrangement of 10q22. Chromosome 10 breakpoints were mapped by fluorescence in situ hybridization to intervals ranging from 8.9 to 72.1 kb within the third intron of MORF (monocytic leukemia zinc finger protein-related factor or MYST4) in four uterine leiomyomata tested. Additional Southern hybridization experiments confirmed that the breakpoint lies within the third intron and narrowed the interval to 2.1 kb in one uterine leiomyomata. MORF is a member of the MYST family of histone acetyltransferase and previously has been found rearranged in some types of acute myeloid leukemia (AML). This is the first instance in which disruption of a histone acetyltransferase has been reported in another tumor type. The breakpoints in uterine leiomyomata would fall in the NH 2 -terminal portion of the protein between a conserved domain found in histones H1 and H5 and the PHD zinc fingers, the CH2CH zinc finger, or the CoA binding site, which is distinct from the breakpoints reported in AML. Mapping of the 17q21 breakpoint by fluorescence in situ hybridization within a specific region in three tumors revealed several positional candidates including GCN5L2, a gene with histone acetyltransferase activity similar to those fused to MORF in AML. Of note, two of three uterine leiomyomata were of the cellular subtype. Involvement of MORF in four uterine leiomyomata with chromosomal rearrangements involving 10q22 and 17q21 suggests a role for this histone acetyltransferase and altered chromatin regulation in uterine mesenchymal neoplasia.
The high mobility group gene, HMGA2, is frequently expressed in uterine leiomyomata (UL) with chromosomal rearrangements of 12q15. In contrast, HMGA2 expression has not been detected in karyotypically normal UL or in myometrium, but has been detected in these tissues after culture. To characterize further the expression pattern of HMGA2, we assessed HMGA2 expression by RT-PCR followed by Southern blot hybridization, and by real-time PCR in three tissue panels: (1) primary myometrial cultures, (2) uncultured tissue from 15 karyotypically normal samples consisting of eleven 46,XX UL and four matched myometrial specimens, and (3) uncultured tissue from ten UL with 12q15 rearrangements and three matched myometrial specimens. HMGA2 expression was detected in all samples from the three panels. The level of HMGA2 expression in karyotypically normal UL was similar to the level of expression in myometrium; however, it was significantly less than the level measured in UL with 12q15 rearrangements. This expression analysis by use of detection methods of different sensitivities underscores the importance of studies of HMGA2 expression in uncultured tissues and of careful interpretation of results from experiments on cultured cells. Moreover, detection of HMGA2 expression in myometrium and in UL without 12q15 rearrangements, tissues previously thought not to express HMGA2, suggests that HMGA2 expression is required in normal adult myometrial physiology.
A prolonged normal course of OP development, which featured waxing and waning of amplitudes, was observed and might have been consequent to maturation and then to final refinements of inner retinal circuitry. In ROP rats, marked attenuation of early OPs was consistent with persistent dysfunction of photoreceptors, and significant attenuation of the late OP5 was evidence of compromised function of inner retinal circuitry.
Intravenous leiomyomatosis (IVL) is a rare smooth-muscle proliferation that is of special interest because of its quasi-malignant behavior. Our finding of a specific chromosomal aberration, a der(14)t(12;14)(q15;q24), in a second case of IVL suggests that it may be characteristic of IVL. We propose that IVL arises from a uterine leiomyoma with a t(12;14)(q15;q24). The presence of an extra copy of 12q15-qter and/or loss of 14q24-qter may be a critical genetic event(s) leading to intravascular intrusion and proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.