A stochastic budgetary simulation model of a dairy farm was developed to allow investigation of the effects of varying biological, technical, and physical processes on farm profitability. The model integrates animal inventory and valuation, milk supply, feed requirement, land and labor utilization, and economic analysis. A key model output is the estimated distribution of farm profitability, which is a function of total receipts from milk, calves, and cull cows less all variable and fixed costs (including an imputed cost for labor). An application of the model was demonstrated by modeling 2 calving patterns: a mean calving date of February 24 (S1) and a mean calving date of January 27 (S2). Monte Carlo simulation was used to determine the influence of variation in milk price, concentrate cost, and silage quality on farm profitability under each scenario. Model validation was conducted by comparing the results from the model against data collected from 21 commercial dairy farms. The net farm profit with S1 was 53,547 euros, and that with S2 was 51,687 euros; the annual EU milk quota was 468,000 kg, and farm size was 40 ha. Monte Carlo simulation showed that the S1 scenario was stochastically dominant over the S2 scenario. Sensitivity analyses showed that farm profit was most sensitive to changes in milk price. The partial coefficients of determination were 99.2, 0.7, and 0.1% for milk price, concentrate cost, and silage quality, respectively, in S1; the corresponding values in S2 were 97.6, 2.3, and 0.1%. Validations of the model showed that it could be used with confidence to study systems of milk production under Irish conditions.
The global dairy industry needs to reappraise the systems of milk production that are operated at farm level with specific focus on enhancing technical efficiency and competitiveness of the sector. The objective of this study was to quantify the factors associated with costs of production, profitability, and pasture use, and the effects of pasture use on financial performance of dairy farms using an internationally recognized representative database over an 8-yr period (2008 to 2015) on pasture-based systems. To examine the associated effects of several farm system and management variables on specific performance measures, a series of multiple regression models were developed. Factors evaluated included pasture use [kg of dry matter/ha and stocking rate (livestock units/ha)], grazing season length, breeding season length, milk recording, herd size, dairy farm size (ha), farmer age, discussion group membership, proportion of purchased feed, protein %, fat %, kg of milk fat and protein per cow, kg of milk fat and protein per hectare, and capital investment in machinery, livestock, and buildings. Multiple regression analysis demonstrated costs of production per hectare differed by year, geographical location, soil type, level of pasture use, proportion of purchased feed, protein %, kg of fat and protein per cow, dairy farm size, breeding season length, and capital investment in machinery, livestock, and buildings per cow. The results of the analysis revealed that farm net profit per hectare was associated with pasture use per hectare, year, location, soil type, grazing season length, proportion of purchased feed, protein %, kg of fat and protein per cow, dairy farm size, and capital investment in machinery and buildings per cow. Pasture use per hectare was associated with year, location, soil type, stocking rate, dairy farm size, fat %, protein %, kg of fat and protein per cow, farmer age, capital investment in machinery and buildings per cow, breeding season length, and discussion group membership. On average, over the 8-yr period, each additional tonne of pasture dry matter used increased gross profit by €278 and net profit by €173 on dairy farms. Conversely, a 10% increase in the proportion of purchased feed in the diet resulted in a reduction in net profit per hectare by €97 and net profit by €207 per tonne of fat and protein. Results from this study, albeit in a quota limited environment, have demonstrated that the profitability of pasture-based dairy systems is significantly associated with the proportion of pasture used at the farm level, being cognizant of the levels of purchased feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.