The subventricular zone (SVZ) of many adult non-human mammals generates large numbers of new neurons destined for the olfactory bulb (OB)1–6. Along the walls of the lateral ventricles, immature neuronal progeny migrate in tangentially-oriented chains that coalesce into a rostral migratory stream (RMS) connecting the SVZ to the OB. The adult human SVZ, in contrast, contains a hypocellular gap layer separating the ependymal lining from a periventricular ribbon of astrocytes7. Some of these SVZ astrocytes can function as neural stem cells in vitro, but their function in vivo remains controversial. An initial report finds few SVZ proliferating cells and rare migrating immature neurons in the RMS of adult humans7. In contrast, a subsequent study indicates robust proliferation and migration in the human SVZ and RMS8,9. Here, we find that the infant human SVZ and RMS contain an extensive corridor of migrating immature neurons before 18 months of age, but, contrary to previous reports8, this germinal activity subsides in older children and is nearly extinct by adulthood. Surprisingly, during this limited window of neurogenesis, not all new neurons in the human SVZ are destined for the OB – we describe a major migratory pathway that targets the prefrontal cortex in humans. Together, these findings reveal robust streams of tangentially migrating immature neurons in human early postnatal SVZ and cortex. These pathways represent potential targets of neurological injuries affecting neonates.
SUMMARY The ubiquitin ligase anaphase-promoting complex (APC) recruits the coactivator Cdc20 to drive mitosis in cycling cells. However, the nonmitotic functions of Cdc20-APC have remained unexplored. We report that Cdc20-APC plays an essential role in dendrite morphogenesis in postmitotic neurons. Knockdown of Cdc20 in cerebellar slices and in postnatal rats in vivo profoundly impairs the formation of granule neuron dendrite arbors in the cerebellar cortex. Remarkably, Cdc20 is enriched at the centrosome in neurons, and the centrosomal localization is critical for Cdc20-dependent dendrite development. We also find that the centrosome-associated protein histone deacetylase 6 (HDAC6) promotes the polyubiquitination of Cdc20, stimulates the activity of centrosomal Cdc20-APC, and drives the differentiation of dendrites. These findings define a novel postmitotic function for Cdc20-APC in the morphogenesis of dendrites in the mammalian brain. The identification of a centrosomal Cdc20-APC ubiquitin signaling pathway holds important implications for diverse biological processes including neuronal connectivity and plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.