The K + /Cl -cotransporter (KCC2) allows adult neurons to maintain low intracellular Cl -levels, which are a prerequisite for efficient synaptic inhibition upon activation of γ-aminobutyric acid receptors. Deficits in KCC2 activity are implicated in epileptogenesis, but how increased neuronal activity leads to transporter inactivation is ill defined. In vitro, the activity of KCC2 is potentiated via phosphorylation of serine 940 (S940). Here we have examined the role this putative regulatory process plays in determining KCC2 activity during status epilepticus (SE) using knockin mice in which S940 is mutated to an alanine (S940A). In wild-type mice, SE induced by kainate resulted in dephosphorylation of S940 and KCC2 internalization. S940A homozygotes were viable and exhibited comparable basal levels of KCC2 expression and activity relative to WT mice. However, exposure of S940A mice to kainate induced lethality within 30 min of kainate injection and subsequent entrance into SE. We assessed the effect of the S940A mutation in cultured hippocampal neurons to explore the mechanisms underlying this phenotype. Under basal conditions, the mutation had no effect on neuronal Cl -extrusion. However, a selective deficit in KCC2 activity was seen in S940A neurons upon transient exposure to glutamate. Significantly, whereas the effects of glutamate on KCC2 function could be ameliorated in WT neurons with agents that enhance S940 phosphorylation, this positive modulation was lost in S940A neurons. Collectively our results suggest that phosphorylation of S940 plays a critical role in potentiating KCC2 activity to limit the development of SE.F ast synaptic inhibition in the adult brain is largely mediated via the activation of γ-aminobutyric acid receptors (GABA A Rs). The ability of neurons to maintain low intracellular Cl -is dependent upon the activity of the K + /Cl -cotransporter KCC2. KCC2 expression in the rodent brain is developmentally regulated with low levels evident before birth that then dramatically increase from postnatal day 7 (P7) onwards and correlate with the appearance of hyperpolarizing GABA A R currents (1). KCC2 null mice die shortly after birth, exhibit high levels of intracellular Cl -and anomalous excitatory actions of GABA and glycine, highlighting the vital role of KCC2 (2). In addition to regulating Cl -transport, KCC2 exhibits transporter-independent properties that affect glutamate receptors and dendritic spines (3-6).Status epilepticus (SE) is a state of continuous seizures that is highly lethal and leads to long-term neurological deficits in survivors. A key feature of SE is impaired GABAergic inhibition (7) that manifests clinically as resistance to the GABA A modulator diazepam (8). The prevailing hypothesis of impaired GABAergic signaling during SE is displacement of GABA A receptors from the synapse and a reduction in the number of receptors on the cell surface (9). However, an additional component that could contribute to the compromised inhibition during SE is a buildup of intracellular C...
Psychostimulants induce neuroadaptations in excitatory and fast inhibitory transmission in the ventral tegmental area (VTA). Mechanisms underlying drug-evoked synaptic plasticity of slow inhibitory transmission mediated by GABAB receptors and G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels, however, are poorly understood. Here, we show that one day after methamphetamine (METH) or cocaine exposure, both synaptically-evoked and baclofen-activated GABABR-GIRK currents were significantly depressed in VTA GABA neurons, and remained depressed for 7 days. Presynaptic inhibition mediated by GABABRs on GABA terminals was also weakened. Quantitative immunoelectron microscopy revealed internalization of GABAB1R and GIRK2, which occurred coincident with dephosphorylation of Ser783 in GABAB2R, a site implicated in regulating GABABR surface expression. Inhibition of protein phosphatases recovered GABABR-GIRK currents in VTA GABA neurons of METH-injected mice. This psychostimulant-evoked impairment in GABABR signaling removes an intrinsic brake on GABA neuron spiking, which may augment GABA transmission in the mesocorticolimbic system.
G-protein-gated inwardly rectifying Kϩ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential.
Rationale We previously co-localized a quantitative trait locus (QTL) for sensitivity to the locomotor stimulant effect of methamphetamine (MA) with a QTL for expression of casein kinase 1 epsilon (Csnk1-ε) in the nucleus accumbens (NAc). Subsequently, we identified a single nucleotide polymorphism in CSNK1E (rs135745) that was associated with increased sensitivity to the subjective effects of d-amphetamine in healthy human subjects. Based on these results, we hypothesized that differential expression of Csnk1-ε causes differential sensitivity to MA-induced locomotor activity in mice. Objective In the present study, we used PF-670462 (PF), which is a selective inhibitor of Csnk1-ε, to directly evaluate the role of Csnk1-ε in the locomotor response to MA in male C57BL/6J mice. Methods We administered vehicle, PF, MA or MA+PF, either via intraperitoneal injections or bilateral intra-NAc microinjections. We also examined Darpp-32 phosphorylation in mice receiving intraperitoneal injections. Results Intraperitoneal PF (20-40 mg/kg) attenuated the locomotor response to MA (2 mg/kg) without affecting baseline activity. The high dose of PF also significantly inhibited MA-induced phosphorylation of Darpp-32, providing a potential mechanism by which Csnk1-ε contributes to MA-induced locomotor activity. Furthermore, microinjection of PF (5 μg/side) into the NAc completely blocked the locomotor response to MA (2.5 μg/side) without affecting baseline activity. Conclusions These results provide direct evidence that Csnk1-ε is crucial for the locomotor stimulant response to a moderate dose of MA and are consistent with the hypothesis that genetic polymorphisms in Csnk1-ε influence sensitivity to amphetamines in both mice and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.