Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for establishing a connection between features and geometrical properties of candidate hits. Apart from basic classifiers we also consider their ensemble extensions and find these extensions generally better performing than basic versions, with an average recognition accuracy of 88%.
The Cosmic Ray Extremely Distributed Observatory (CREDO) pursues a global research strategy dedicated to the search for correlated cosmic rays, so-called Cosmic Ray Ensembles (CRE). Its general approach to CRE detection does not involve any a priori considerations, and its search strategy encompasses both spatial and temporal correlations, on different scales. Here we search for time clustering of the cosmic ray events collected with a small sea-level extensive air shower array at the University of Adelaide. The array consists of seven one-square-metre scintillators enclosing an area of 10 m × 19 m. It has a threshold energy ~0.1 PeV, and records cosmic ray showers at a rate of ~6 mHz. We have examined event arrival times over a period of over 2.5 years in two equipment configurations (without and with GPS timing), recording ~300 k events and ~100 k events. We determined the event time spacing distributions between individual events and the distributions of time periods which contained specific numbers of multiple events. We find that the overall time distributions are as expected for random events. The distribution which was chosen a priori for particular study was for time periods covering five events (four spacings). Overall, these distributions fit closely with expectation, but there are two outliers of short burst periods in data for each configuration. One of these outliers contains eight events within 48 s. The physical characteristics of the array will be discussed together with the analysis procedure, including a comparison between the observed time distributions and expectation based on randomly arriving events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.