Programme Hospitalier Recherche Clinique, Institut Pasteur, Inserm, French Public Health Agency.
SUMMARYChronic kidney disease (CKD) represents a major health burden1. Its central feature of renal fibrosis is not well understood. By whole exome resequencing in a model disorder for renal fibrosis, nephronophthisis (NPHP), we identified mutations of Fanconi anemia-associated nuclease 1 (FAN1) as causing karyomegalic interstitial nephritis (KIN). Renal histology of KIN is indistinguishable from NPHP except for the presence of karyomegaly2. FAN1 has nuclease activity, acting in DNA interstrand crosslinking (ICL) repair within the Fanconi anemia pathway of DNA damage response (DDR)3–6. We demonstrate that cells from individuals with FAN1 mutations exhibit sensitivity to the ICL agent mitomycin C. However, they do not exhibit chromosome breakage or cell cycle arrest after diepoxybutane treatment, unlike cells from patients with Fanconi anemia. We complement ICL sensitivity with wild type FAN1 but not mutant cDNA from individuals with KIN. Depletion of fan1 in zebrafish revealed increased DDR, apoptosis, and kidney cysts akin to NPHP. Our findings implicate susceptibility to environmental genotoxins and inadequate DNA repair as novel mechanisms of renal fibrosis and CKD.
Gitelman's syndrome (GS) is a rare, autosomal recessive, salt-losing tubulopathy caused by mutations in the SLC12A3 gene, which encodes the thiazide-sensitive NaCl cotransporter (NCC). Because 18 to 40% of suspected GS patients carry only one SLC12A3 mutant allele, large genomic rearrangements may account for unidentified mutations. Here, we directly sequenced genomic DNA from a large cohort of 448 unrelated patients suspected of having GS. We found 172 distinct mutations, of which 100 were unreported previously. In 315 patients (70%), we identified two mutations; in 81 patients (18%), we identified one; and in 52 patients (12%), we did not detect a mutation. In 88 patients, we performed a search for large rearrangements by multiplex ligationdependent probe amplification (MLPA) and found nine deletions and two duplications in 24 of the 51 heterozygous patients. A second technique confirmed each rearrangement. Based on the breakpoints of seven deletions, nonallelic homologous recombination by Alu sequences and nonhomologous end-joining probably favor these intragenic deletions. In summary, missense mutations account for approximately 59% of the mutations in Gitelman's syndrome, and there is a predisposition to large rearrangements (6% of our cases) caused by the presence of repeated sequences within the SLC12A3 gene.
SummaryBackground and objectives Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is a rare autosomal recessive renal tubular disease. It is caused by mutations in CLDN16 and CLDN19, encoding claudin-16 and -19, respectively. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is usually complicated by progressive CKD. The objectives of this study were to describe the clinical and genetic features of familial hypomagnesemia with hypercalciuria and nephrocalcinosis and analyze phenotype-genotype associations in patients with CLDN16 or CLDN19 mutations.Design, setting, participants, & measurements Data from 32 genetically confirmed patients (9 patients with CLDN16 and 23 patients with CLDN19 mutations) from 26 unrelated families were retrospectively reviewed.Results Diagnosis was based on clinical criteria at a median age of 9.5 years and confirmed by genetic testing at a median age of 15.5 years. In total, 13 CLDN16 or CLDN19 mutations were identified, including 8 novel mutations. A founder effect was detected for the recurrent CLDN16 p.Ala139Val mutation in North African families and the CLDN19 p.Gly20Asp mutation in Spanish and French families. CKD was more frequently observed in patients with CLDN19 mutations: survival without CKD or ESRD was 56% at 20 years of age in CLDN19 versus 100% in CLDN16 mutations (log rank P,0.01). Ocular abnormalities were observed in 91% of patients with CLDN19 mutations and none of the patients with CLDN16 mutations (P,0.01). Treatments seem to have no effect on hypercalciuria and CKD progression.Conclusions Patients with CLDN19 mutations may display more severe renal impairment than patients with CLDN16 mutations. Ocular abnormalities were observed only in patients with CLDN19 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.