Laboratory bioassays were conducted to evaluate the effects on honeybee behavior of sublethal doses of insecticides chronically administered orally or by contact. Emergent honeybees received a daily dose of insecticide ranging from one-fifth to one-five-hundredth of the median lethal dose (LD50) during 11 d. After exposure to fipronil (0.1 and 0.01 ng/bee), acetamiprid (1 and 0.1 microg/bee), or thiamethoxam (1 and 0.1 ng/bee), behavioral functions of honeybees were tested on day 12. Fipronil, used at the dose of 0.1 ng/bee, induced mortality of all honeybees after one week of treatment. As a result of contact treatment at 0.01 ng/bee, honeybees spent significantly more time immobile in an open-field apparatus and ingested significantly more water. In the olfactory conditioning paradigm, fipronil-treated honeybees failed to discriminate between a known and an unknown odorant. Thiamethoxam by contact induced either a significant decrease of olfactory memory 24 h after learning at 0.1 ng/bee or a significant impairment of learning performance with no effect on memory at 1 ng/bee. Responsiveness to antennal sucrose stimulation was significantly decreased for high sucrose concentrations in honeybees treated orally with thiamethoxam (1 ng/bee). The only significant effect of acetamiprid (administered orally, 0.1 microg/bee) was an increase in responsiveness to water. The neonicotinoids acetamiprid and thiamethoxam tested at the highest dose (one-tenth and one-fifth of their oral LD50, respectively) and fipronil at one-five-hundredth of LD50 have limited effects on the motor, sensory, and cognitive functions of the honeybee. Our data on the intrinsic toxicity of the compounds after chronic exposure have to be taken into account for evaluation of risk to honeybees in field conditions.
Acetamiprid and thiamethoxam are insecticides introduced for pest control, but they can also affect non-target insects such as honeybees. In insects, these neonicotinoid insecticides are known to act on acetylcholine nicotinic receptors but the behavioral effects of low doses are not yet fully understood. The effects of acetamiprid and thiamethoxam were studied after acute sublethal treatment on the behavior of the honeybee (Apis mellifera) under controlled laboratory conditions. The drugs were either administered orally or applied topically on the thorax. After oral consumption acetamiprid increased sensitivity to antennal stimulation by sucrose solutions at doses of 1 microg/bee and impaired long-term retention of olfactory learning at the dose of 0.1 microg/bee. Acetamiprid thoracic application induced no effect in these behavioral assays but increased locomotor activity (0.1 and 0.5 microg/bee) and water-induced proboscis extension reflex (0.1, 0.5, and 1 microg/bee). Unlike acetamiprid, thiamethoxam had no effect on bees' behavior under the conditions used. Our results suggest a particular vulnerability of honeybee behavior to sublethal doses of acetamiprid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.