Obesity is globally prevalent and highly heritable, but the underlying
genetic factors remain largely elusive. To identify genetic loci for
obesity-susceptibility, we examined associations between body mass index (BMI)
and ~2.8 million SNPs in up to 123,865 individuals, with targeted follow-up of
42 SNPs in up to 125,931 additional individuals. We confirmed 14 known
obesity-susceptibility loci and identified 18 new loci associated with BMI
(P<5×10−8), one of which
includes a copy number variant near GPRC5B. Some loci
(MC4R, POMC, SH2B1, BDNF) map near key hypothalamic
regulators of energy balance, and one is near GIPR, an incretin
receptor. Furthermore, genes in other newly-associated loci may provide novel
insights into human body weight regulation.
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
We identified a set of SNPs in the first intron of the FTO (fat mass and obesity associated) gene on chromosome 16q12.2 that is consistently strongly associated with early-onset and severe obesity in both adults and children of European ancestry with an experiment-wise P value of 1.67 x 10(-26) in 2,900 affected individuals and 5,100 controls. The at-risk haplotype yields a proportion of attributable risk of 22% for common obesity. We conclude that FTO contributes to human obesity and hence may be a target for subsequent functional analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.