Objective Human and animal studies have shown that Nav1.7 sodium channels, which are preferentially expressed within nociceptors and sympathetic neurons, play a major role in inflammatory and neuropathic pain. Inherited erythromelalgia (IEM) has been linked to gain-of-function mutations of Nav1.7. We now report a novel mutation (V400M) in a three-generation Canadian family in which pain is relieved by carbamazepine (CBZ). Methods We extracted genomic DNA from blood samples of eight members of the family, and the sequence of SCN9A coding exons was compared with the reference Nav1.7 complementary DNA. Wild-type Nav1.7 and V400M cell lines were then analyzed using whole-cell patch-clamp recording for changes in activation, deactivation, steady-state inactivation, and ramp currents. Results Whole-cell patch-clamp studies of V400M demonstrate changes in activation, deactivation, steady-state inactivation, and ramp currents that can produce dorsal root ganglia neuron hyperexcitability that underlies pain in these patients. We show that CBZ, at concentrations in the human therapeutic range, normalizes the voltage dependence of activation and inactivation of this inherited erythromelalgia mutation in Nav1.7 but does not affect these parameters in wild-type Nav1.7. Interpretation Our results demonstrate a normalizing effect of CBZ on mutant Nav1.7 channels in this kindred with CBZ-responsive inherited erythromelalgia. The selective effect of CBZ on the mutant Nav1.7 channel appears to explain the ameliorative response to treatment in this kindred. Our results suggest that functional expression and pharmacological studies may provide mechanistic insights into hereditary painful disorders.
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of upper and lower motor neurons, resulting in progressive weakness and muscle atrophy. Recent studies suggest that nondemented ALS patients can show selective cognitive impairments, predominantly executive dysfunction, but little is known about the neural basis of these impairments. Oculomotor studies in ALS have described deficits in antisaccade execution, which requires the implementation of a task set that includes inhibition of automatic responses followed by generation of a voluntary action. It has been suggested that the dorsolateral prefrontal cortex (DLPFC) contributes in this process. Thus, we investigated whether deterioration of executive functions in ALS patients, such as the ability to implement flexible behavior during the antisaccade task, is related to DLPFC dysfunction. While undergoing an fMRI scan, 12 ALS patients and 12 age-matched controls performed an antisaccade task with concurrent eye tracking. We hypothesized that DLPFC deficits would appear during the antisaccade preparation stage, when the task set is being established. ALS patients made more antisaccade direction errors and showed significant reductions in DLPFC activation. In contrast, regions, such as supplementary eye fields and frontal eye fields, showed increased activation that was anticorrelated with the number of errors. The ALS group also showed reduced saccadic latencies that correlated with increased activation across the oculomotor saccade system. These findings suggest that ALS results in deficits in the inhibition of automatic responses that are related to impaired DLPFC activation. However, they also suggest that ALS patients undergo functional changes that partially compensate the neurological impairment.
Background: Patient registries represent an important method of organizing "real world" patient information for clinical and research purposes. Registries can facilitate clinical trial planning and recruitment and are particularly useful in this regard for uncommon and rare diseases. Neuromuscular diseases (NMDs) are individually rare but in aggregate have a significant prevalence. In Canada, information on NMDs is lacking. Barriers to performing Canadian multicentre NMD research exist which can be overcome by a comprehensive and collaborative NMD registry. Methods: We describe the objectives, design, feasibility and initial recruitment results for the Canadian Neuromuscular Disease Registry (CNDR). Results: The CNDR is a clinic-based registry which launched nationally in June 2011, incorporates paediatric and adult neuromuscular clinics in British Columbia, Alberta, Ontario, Quebec, New Brunswick and Nova Scotia and, as of December 2012, has recruited 1161 patients from 12 provinces and territories. Complete medical datasets have been captured on 460 "index disease" patients. Another 618 "non-index" patients have been recruited with capture of physicianconfirmed diagnosis and contact information. We have demonstrated the feasibility of blended clinic and central office-based recruitment. "Index disease" patients recruited at the time of writing include 253 with Duchenne and Becker muscular dystrophy, 161 with myotonic dystrophy, and 71 with ALS. Conclusions: The CNDR is a new nationwide registry of patients with NMDs that represents an important advance in Canadian neuromuscular disease research capacity. It provides an innovative platform for organizing patient information to facilitate clinical research and to expedite translation of recent laboratory findings into human studies.RÉSUMÉ: Le RCMN : collaborer pour procurer de nouveaux traitements aux Canadiens. Contexte : Un registre de patients est une façon très avantageuse d'organiser l'information concrète au sujet de patients à des fins cliniques ou de recherche. Les registres peuvent faciliter la planification d'essais cliniques et le recrutement et sont particulièrement utiles à cet égard quand il s'agit de maladies rares. Les maladies neuromusculaires (MNM) considérées individuellement sont des maladies rares mais elles ont une prévalence non négligeable si elles sont regroupées. Au Canada, on manque d'informations sur les MNM. Il existe des obstacles à la réalisation de recherches multicentriques sur les MNM au Canada. Ces obstacles peuvent être surmontés par l'établissement d'un registre détaillé à des fins de collaboration sur les MNM. Méthode : Nous décrivons les objectifs, le plan, la faisabilité et les résultats du recrutement initial du Registre canadien des maladies neuromusculaires. Résultats : Le RCMN est un registre basé sur la clinique qui a été inauguré à travers le Canada en juin 2011. Il inclut des cliniques neuromusculaires pédiatriques et adultes et inclut des patients de Colombie-Britannique, d'Alberta, de l'Ontario, du Québe...
Background: Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease resulting in muscle weakness, dysarthria and dysphagia, and ultimately respiratory failure leading to death. Half of the ALS patients survive less than 3 years, and 80% of the patients survive less than 5 years. Riluzole is the only approved medication in Canada with randomized controlled clinical trial evidence to slow the progression of ALS, albeit only to a modest degree. The Canadian Neuromuscular Disease Registry (CNDR) collects data on over 140 different neuromuscular diseases including ALS across ten academic institutions and 28 clinics including ten multidisciplinary ALS clinics. Methods: In this study, CNDR registry data were analyzed to examine potential differences in ALS care among provinces in time to diagnosis, riluzole and feeding tube use. Results: Significant differences were found among provinces, in time to diagnosis from symptom onset, in the use of riluzole and in feeding tube use. Conclusions: Future investigations should be undertaken to identify factors contributing to such differences, and to propose potential interventions to address the provincial differences reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.