In situ Raman scattering studies allow following real-time evolutions of volume or surface structures under extreme conditions. In nuclear materials sciences, ion irradiation-induced atomic organization modification and water radiolysis are of a major interest. In order to better understand these phenomena, we have developed an in situ versatile portable Raman spectroscopy system coupled with a cyclotron accelerator, allowing monitoring of a solid/liquid interface under irradiation and thus giving access to effects of radiolysis. The different parts of the system and their improvements are described in details.The system efficiency is highlighted by a comparative study of the time dependence of UO 2 surface modification induced, on one hand by contact with water under irradiation by 5 MeV He 2+ particles, and on the other hand by pure chemical alteration, through contact with a hydrogen peroxide solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.