Despite substantial progress in lung cancer immunotherapy, the overall response rate in patients with KRAS-mutant lung adenocarcinoma (LUAD) remains low. Combining standard immunotherapy with adjuvant approaches that enhance adaptive immune responsessuch as epigenetic modulation of antitumor immunity-is therefore an attractive strategy. To identify epigenetic regulators of tumor immunity, we constructed an epigenetic-focused single guide RNA library and performed an in vivo CRISPR screen in a Kras G12D / Trp53 −/− LUAD model. Our data showed that loss of the histone chaperone Asf1a in tumor cells sensitizes tumors to anti-PD-1 treatment. Mechanistic studies revealed that tumor cell-intrinsic Asf1a defi ciency induced immunogenic macrophage differentiation in the tumor microenvironment by upregulating GM-CSF expression and potentiated T-cell activation in combination with anti-PD-1. Our results provide a rationale for a novel combination therapy consisting of ASF1A inhibition and anti-PD-1 immunotherapy. SIGNIFICANCE: Using an in vivo epigenetic CRISPR screen, we identifi ed Asf1a as a critical regulator of LUAD sensitivity to anti-PD-1 therapy. Asf1a defi ciency synergized with anti-PD-1 immunotherapy by promoting M1-like macrophage polarization and T-cell activation. Thus, we provide a new immunotherapeutic strategy for this subtype of patients with LUAD.
Syndromes associated with multiple mtDNA deletions are due to different molecular defects that can result in a wide spectrum of predominantly adult-onset clinical presentations, ranging from progressive external ophthalmoplegia (PEO) to multisystemic disorders of variable severity. The autosomal-dominant form of PEO is genetically heterogeneous. Recently, causative mutations have been reported in several nuclear genes that encode proteins of the mtDNA replisome machinery (POLG, POLG2, and C10orf2) or that are involved in pathways for the synthesis of deoxyribonuclotides (ANT1 and RRM2B). Despite these findings, putative mutations remain unknown in half of the subjects with PEO. We report the identification, by exome sequencing, of mutations in DNA2 in adult-onset individuals with a form of mitochondrial myopathy featuring instability of muscle mtDNA. DNA2 encodes a helicase/nuclease family member that is most likely involved in mtDNA replication, as well as in the long-patch base-excision repair (LP-BER) pathway. In vitro biochemical analysis of purified mutant proteins revealed a severe impairment of nuclease, helicase, and ATPase activities. These results implicate human DNA2 and the LP-BER pathway in the pathogenesis of adult-onset disorders of mtDNA maintenance.
Background and Purpose: We aimed to investigate the rate of hospital admissions for cerebrovascular events and of revascularization treatments for acute ischemic stroke in Italy during the coronavirus disease 2019 (COVID-19) outbreak. Methods: The Italian Stroke Organization performed a multicenter study involving 93 Italian Stroke Units. We collected information on hospital admissions for cerebrovascular events from March 1 to March 31, 2020 (study period), and from March 1 to March 31, 2019 (control period). Results: Ischemic strokes decreased from 2399 in 2019 to 1810 in 2020, with a corresponding hospitalization rate ratio (RR) of 0.75 ([95% CI, 0.71–0.80] P <0.001); intracerebral hemorrhages decreased from 400 to 322 (hospitalization RR, 0.81 [95% CI, 0.69–0.93]; P =0.004), and transient ischemic attacks decreased from 322 to 196 (hospitalization RR, 0.61 [95% CI, 0.51–0.73]; P <0.001). Hospitalizations decreased in Northern, Central, and Southern Italy. Intravenous thrombolyses decreased from 531 (22.1%) in 2019 to 345 in 2020 (19.1%; RR, 0.86 [95% CI, 0.75–0.99]; P =0.032), while primary endovascular procedures increased in Northern Italy (RR, 1.61 [95% CI, 1.13–2.32]; P =0.008). We found no correlation ( P =0.517) between the hospitalization RRs for all strokes or transient ischemic attack and COVID-19 incidence in the different areas. Conclusions: Hospitalizations for stroke or transient ischemic attacks across Italy were reduced during the worst period of the COVID-19 outbreak. Intravenous thrombolytic treatments also decreased, while endovascular treatments remained unchanged and even increased in the area of maximum expression of the outbreak. Limited hospitalization of the less severe patients and delays in hospital admission, due to overcharge of the emergency system by COVID-19 patients, may explain these data.
The molecular diagnosis of mitochondrial disorders still remains elusive in a large proportion of patients, but advances in next generation sequencing are significantly improving our chances to detect mutations even in sporadic patients. Syndromes associated with mitochondrial DNA multiple deletions are caused by different molecular defects resulting in a wide spectrum of predominantly adult-onset clinical presentations, ranging from progressive external ophthalmoplegia to multi-systemic disorders of variable severity. The mutations underlying these conditions remain undisclosed in half of the affected subjects. We applied next-generation sequencing of known mitochondrial targets (MitoExome) to probands presenting with adult-onset mitochondrial myopathy and harbouring mitochondrial DNA multiple deletions in skeletal muscle. We identified autosomal recessive mutations in the DGUOK gene (encoding mitochondrial deoxyguanosine kinase), which has previously been associated with an infantile hepatocerebral form of mitochondrial DNA depletion. Mutations in DGUOK occurred in five independent subjects, representing 5.6% of our cohort of patients with mitochondrial DNA multiple deletions, and impaired both muscle DGUOK activity and protein stability. Clinical presentations were variable, including mitochondrial myopathy with or without progressive external ophthalmoplegia, recurrent rhabdomyolysis in a young female who had received a liver transplant at 9 months of age and adult-onset lower motor neuron syndrome with mild cognitive impairment. These findings reinforce the concept that mutations in genes involved in deoxyribonucleotide metabolism can cause diverse clinical phenotypes and suggest that DGUOK should be screened in patients harbouring mitochondrial DNA deletions in skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.