Trypanolytic variants in APOL1, which encodes apolipoprotein L1, associate with kidney disease in African Americans, but whether APOL1-associated glomerular disease has a distinct clinical phenotype is unknown. Here we determined APOL1 genotypes for 271 African American cases, 168 European American cases, and 939 control subjects. In a recessive model, APOL1 variants conferred seventeenfold higher odds (95% CI 11 to 26) for focal segmental glomerulosclerosis (FSGS) and twenty-ninefold higher odds (95% CI 13 to 68) for HIV-associated nephropathy (HIVAN). FSGS associated with two APOL1 risk alleles associated with earlier age of onset (P ϭ 0.01) and faster progression to ESRD (P Ͻ 0.01) but similar sensitivity to steroids compared with other subjects. Individuals with two APOL1 risk alleles have an estimated 4% lifetime risk for developing FSGS, and untreated HIVinfected individuals have a 50% risk for developing HIVAN. The effect of carrying two APOL1 risk alleles explains 18% of FSGS and 35% of HIVAN; alternatively, eliminating this effect would reduce FSGS and HIVAN by 67%. A survey of world populations indicated that the APOL1 kidney risk alleles are present only on African chromosomes. In summary, African Americans carrying two APOL1 risk alleles have a greatly increased risk for glomerular disease, and APOL1-associated FSGS occurs earlier and progresses to ESRD more rapidly. These data add to the evidence base required to determine whether genetic testing for APOL1 has a use in clinical practice.
The increased burden of chronic kidney and end-stage kidney diseases (ESKD) in populations of African ancestry has been largely unexplained. To identify genetic variants predisposing to idiopathic and HIV-1-associated focal segmental glomerulosclerosis (FSGS), we carried out an admixture-mapping linkage-disequilibrium genome scan on 190 African American individuals with FSGS and 222 controls. We identified a chromosome 22 region with a genome-wide logarithm of the odds (lod) score of 9.2 and a peak lod of 12.4 centered on MYH9, a functional candidate gene expressed in kidney podocytes. Multiple MYH9 SNPs and haplotypes were recessively associated with FSGS, most strongly a haplotype spanning exons 14 through 23 (OR = 5.0, 95% CI = 3.5-7.1; P = 4 × 10 −23 , n = 852). This association extended to hypertensive ESKD (OR = 2.2, 95% CI = 1.5-3.4; n = 433), but not type 2 diabetic ESKD (n = 476). Genetic variation at the MYH9 locus substantially explains the increased burden of FSGS and hypertensive ESKD among African Americans.The prevalence of chronic kidney disease (CKD) in the United States is currently estimated at 13% and is associated with significant morbidity and mortality 1 . Approximately 100,000 Americans develop end-stage kidney (renal) disease (ESKD) each year. The cumulative lifetime risk for ESKD varies by ancestry, and is approximately 7.5% for African Americans and 2.1% for European Americans2. African Americans have a disproportionate risk for several forms of CKD, among them diabetic nephropathy3, hypertensive nephrosclerosis4, lupus nephritis5, focal segmental glomerulosclerosis (FSGS) 6 and HIV-associated nephropathy (a distinct form of FSGS, also termed collap-sing glomerulopathy)7 , 8. The disproportionate risk for CKD may be partially explained by differences in social-economic status, lifestyle factors and clinical factors such as blood pressure control, but most of the increased risk remains unexplained9.FSGS is a clinical syndrome involving podocyte injury and glomerular scarring, and includes genetic forms with autosomal dominant or recessive mendelian inheritance, reactive forms associated with other illnesses (including HIV-1 disease) or medications, and a sporadic, idiopathic form, which accounts for the majority of cases 10 . Recent data suggest an increase in the incidence of FSGS, which currently accounts for up to 3% of ESKD cases6. African Americans have a fourfold increased risk for sporadic FSGS11 and an 18-to 50-fold increased risk for HIV-1-associated FSGS7 ,12 . Individuals of African descent also have increased risk for FSGS in other geographic regions, further suggesting that genetic factors contribute to these disparities 11 .A strategy for identifying genes underlying such ancestry-driven health disparities is mapping by admixture linkage disequilibrium (MALD). MALD has successfully identified a genomic region associated with prostate cancer 13 subsequently replicated by a genome-wide association study14, as well as genes associated with hypertension15, multiple scl...
BackgroundReports from centers treating patients with coronavirus disease 2019 (COVID-19) have noted that such patients frequently develop AKI. However, there have been no direct comparisons of AKI in hospitalized patients with and without COVID-19 that would reveal whether there are aspects of AKI risk, course, and outcomes unique to this infection.MethodsIn a retrospective observational study, we evaluated AKI incidence, risk factors, and outcomes for 3345 adults with COVID-19 and 1265 without COVID-19 who were hospitalized in a large New York City health system and compared them with a historical cohort of 9859 individuals hospitalized a year earlier in the same health system. We also developed a model to identify predictors of stage 2 or 3 AKI in our COVID-19.ResultsWe found higher AKI incidence among patients with COVID-19 compared with the historical cohort (56.9% versus 25.1%, respectively). Patients with AKI and COVID-19 were more likely than those without COVID-19 to require RRT and were less likely to recover kidney function. Development of AKI was significantly associated with male sex, Black race, and older age (>50 years). Male sex and age >50 years associated with the composite outcome of RRT or mortality, regardless of COVID-19 status. Factors that were predictive of stage 2 or 3 AKI included initial respiratory rate, white blood cell count, neutrophil/lymphocyte ratio, and lactate dehydrogenase level.ConclusionsPatients hospitalized with COVID-19 had a higher incidence of severe AKI compared with controls. Vital signs at admission and laboratory data may be useful for risk stratification to predict severe AKI. Although male sex, Black race, and older age associated with development of AKI, these associations were not unique to COVID-19.
The molecular and cellular processes that lead to renal damage and to the heterogeneity of lupus nephritis (LN) are not well understood. We applied single-cell RNA sequencing (scRNA-seq) to renal biopsies from patients with LN and evaluated skin biopsies as a potential source of diagnostic and prognostic markers of renal disease. Type I interferon (IFN) response signatures in tubular cells and in keratinocytes distinguished patients with LN from healthy control subjects. Moreover, a high IFN response signature and fibrotic signature in tubular cells were each associated with failure to respond to treatment. Analysis of tubular cells from patients with proliferative, membranous, and mixed LN indicated pathways relevant to inflammation and fibrosis, which offer insight into their histological differences. In summary, we applied scRNA-seq to LN to deconstruct its heterogeneity and identify novel targets for personalized approaches to therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.