Since their origin, human populations have colonized the whole planet, but the demographic processes governing range expansions are mostly unknown. We analyzed the genealogy of more than one million individuals resulting from a range expansion in Quebec between 1686 and 1960 and reconstructed the spatial dynamics of the expansion. We find that a majority of the present Saguenay Lac-Saint-Jean population can be traced back to ancestors having lived directly on or close to the wave front. Ancestors located on the front contributed significantly more to the current gene pool than those from the range core, likely due to a 20% larger effective fertility of women on the wave front. This fitness component is heritable on the wave front and not in the core, implying that this life-history trait evolves during range expansions.
The pacemaking activity of specialized tissues in the heart and gut results in lifelong rhythmic contractions. Here we describe a new syndrome characterized by Chronic Atrial and Intestinal Dysrhythmia, termed CAID syndrome, in 16 French Canadians and 1 Swede. We show that a single shared homozygous founder mutation in SGOL1, a component of the cohesin complex, causes CAID syndrome. Cultured dermal fibroblasts from affected individuals showed accelerated cell cycle progression, a higher rate of senescence and enhanced activation of TGF-β signaling. Karyotypes showed the typical railroad appearance of a centromeric cohesion defect. Tissues derived from affected individuals displayed pathological changes in both the enteric nervous system and smooth muscle. Morpholino-induced knockdown of sgol1 in zebrafish recapitulated the abnormalities seen in humans with CAID syndrome. Our findings identify CAID syndrome as a novel generalized dysrhythmia, suggesting a new role for SGOL1 and the cohesin complex in mediating the integrity of human cardiac and gut rhythm.
The Saguenay-Lac St-Jean population of Quebec is relatively isolated and has genealogical records dating to the 17th-century French founders. In 120 extended families with at least one sib pair affected with early-onset hypertension and/or dyslipidemia, we analyzed the genetic determinants of hypertension and related cardiovascular and metabolic conditions. Variance-components linkage analysis revealed 46 loci after 100,000 permutations. The most prominent clusters of overlapping quantitative-trait loci were on chromosomes 1 and 3, a finding supported by principal-components and bivariate analyses. These genetic determinants were further tested by classifying families by use of LOD score density analysis for each measured phenotype at every 5 cM. Our study showed the founder effect over several generations and classes of living individuals. This quantitative genealogical approach supports the notion of the ancestral causality of traits uniquely present and inherited in distinct family classes. With the founder effect, traits determined within population subsets are measurably and quantitatively transmitted through generational lineage, with a precise component contributing to phenotypic variance. These methods should accelerate the uncovering of causal haplotypes in complex diseases such as hypertension and metabolic syndrome.
30Humans have colonized the planet through a series of range expansions, which deeply impacted 31 genetic diversity in newly settled areas and potentially increased the frequency of deleterious mutations 32 on expanding wave fronts. To test this prediction, we studied the genomic diversity of French Canadians 33 who colonized Quebec in the 17 th century. We used historical information and records from ~4000 34 ascending genealogies to select individuals whose ancestors lived mostly on the colonizing wave front 35 and individuals whose ancestors remained in the core of the settlement. Comparison of exomic diversity 36 reveals that i) both new and low frequency variants are significantly more deleterious in front than in 37 core individuals, ii) equally deleterious mutations are at higher frequencies in front individuals, and iii) 38 front individuals are two times more likely to be homozygous for rare very deleterious mutations 39 present in Europeans. These differences have emerged in the past 6-9 generations and cannot be 40 explained by differential inbreeding, but are consistent with relaxed selection on the wave front. 41Modeling the evolution of rare variants allowed us to estimate their associated selection coefficients as 42 well as front and core effective sizes. Even though range expansions had a limited impact on the overall 43 fitness of French Canadians, they could explain the higher prevalence of recessive genetic diseases in 44 recently settled regions. Since we show that modern human populations are experiencing differential 45 strength of purifying selection, similar processes might have happened throughout human history, 46 contributing to a higher mutation load in populations that have undergone spatial expansions. 47 48.
Humans have colonized the planet through a series of range expansions, which deeply impacted genetic diversity in newly settled areas and potentially increased the frequency of deleterious mutations on expanding wave fronts. To test this prediction, we studied the genomic diversity of French Canadians who colonized Quebec in the 17th century. We used historical information and records from ∼4000 ascending genealogies to select individuals whose ancestors lived mostly on the colonizing wave front and individuals whose ancestors remained in the core of the settlement. Comparison of exomic diversity reveals that: (i) both new and low-frequency variants are significantly more deleterious in front than in core individuals, (ii) equally deleterious mutations are at higher frequencies in front individuals, and (iii) front individuals are two times more likely to be homozygous for rare very deleterious mutations present in Europeans. These differences have emerged in the past six to nine generations and cannot be explained by differential inbreeding, but are consistent with relaxed selection mainly due to higher rates of genetic drift on the wave front. Demographic inference and modeling of the evolution of rare variants suggest lower effective size on the front, and lead to an estimation of selection coefficients that increase with conservation scores. Even though range expansions have had a relatively limited impact on the overall fitness of French Canadians, they could explain the higher prevalence of recessive genetic diseases in recently settled regions of Quebec.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.