In this trial, patisiran improved multiple clinical manifestations of hereditary transthyretin amyloidosis. (Funded by Alnylam Pharmaceuticals; APOLLO ClinicalTrials.gov number, NCT01960348 .).
Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.
Background Hereditary transthyretin (ATTRv) amyloidosis is a rare, inherited, progressive disease caused by mutations in the transthyretin (TTR) gene. We aimed to assess the efficacy and safety of long-term treatment with patisiran, an RNA interference therapeutic that inhibits TTR production, in patients with ATTRv amyloidosis with polyneuropathy.
MethodsThis multi-country, multi-centre, open-label extension (OLE) trial enrolled patients at 43 sites in 19 countries as of 24 September 2018. Patients were eligible if they had completed the phase 3 APOLLO (randomised, double-blind, placebo-controlled [2:1], 18-month study) or phase 2 OLE (single-arm, 24-month study) parent studies and tolerated the study drug. Eligible patients from APOLLO (APOLLO-patisiran [received patisiran during APOLLO] and APOLLO-placebo [received placebo during APOLLO] groups) and the phase 2 OLE (phase 2 OLE patisiran group) studies enrolled in this Global OLE trial and receive patisiran 0•3 mg/kg by intravenous infusion every 3 weeks for up to 5 years. Efficacy assessments include measures of polyneuropathy (modified Neuropathy Impairment Score +7 [mNIS+7]), quality of life, autonomic symptoms, nutritional status, disability, ambulation status, motor function, and cardiac stress. Patients included in the current efficacy analyses are those who had completed 12-month efficacy assessments as of the data cut-off. Safety analyses included all patients who received ≥1 dose of patisiran up to the data cut-off. The Global OLE is ongoing with no new enrolment, and current findings are based on the 12-month interim analysis. The study is registered with ClinicalTrials.gov, NCT02510261.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.