The characterization and monitoring of buildings is an issue that has attracted the interest of many sectors over the last two decades. With the increasing use of permanent, continuous and real-time networks, ambient vibrations can provide a simple tool for the identification of dynamic building parameters. This study is focused on the long-term variation of frequency and damping in several buildings, using the Random Decrement Technique (RDT). RDT provides a fast, robust and accurate long-term analysis and improves the reliability of frequency and damping measurements for structural health monitoring. This reveals particularly useful information in finding out precisely how far changes in modal parameters can be related to changes in physical properties. This paper highlights the reversible changes of the structure's dynamic parameters, correlated with external forces, such as temperature and exposure to the sun. Contrasting behaviors are observed, including correlation and anti-correlation with temperature variations.
Recent work in the field of cryo-seismology demonstrates that high-frequency (>1 Hz) seismic waves provide key constraints on a wide range of glacier processes, such as basal friction, surface crevassing, or subglacial water flow. Establishing quantitative links between the seismic signal and the processes of interest, however, requires detailed characterization of the wavefield, which, at high frequencies, necessitates the deployment of large and dense seismic arrays. Although dense seismic array monitoring has recently become increasingly common in geophysics, its application to glaciated environments remains limited. Here, we present a dense seismic array experiment made of 98 three-component seismic stations continuously recording during 35 days in early spring 2018 on the Argentière Glacier, French Alps. The seismic dataset is supplemented with a wide range of complementary observations obtained from ground-penetrating radar, drone imagery, Global Navigation Satellite Systems positioning, and in situ measurements of basal glacier sliding velocities and subglacial water discharge. We present first results through conducting spectral analysis, template matching, matched-field processing, and eikonal-wave tomography. We report enhanced spatial resolution on basal stick slip and englacial fracturing sources as well as novel constraints on the heterogeneous nature of the noise field generated by subglacial water flow and on the link between crevasse properties and englacial seismic velocities. We outline in which ways further work using this dataset could help tackle key remaining questions in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.