Background: Even though two prophylactic vaccines against HPV are currently licensed, infections by the virus continue to be a major health problem mainly in developing countries. The cost of the vaccines limits wide-scale application in poor countries. A promising strategy for producing affordable and efficient vaccines involves the expression of recombinant immunogens in plants. Several HPV genes have been expressed in plants, including L1, which can self-assemble into virus-like particles. A plant-based, dual prophylactic/therapeutic vaccine remains an attractive possibility.
A number of different antigens have been successfully expressed in transgenic plants, and some are currently being evaluated as orally delivered vaccines. Here we report the successful expression of rotavirus capsid proteins VP2 and VP6 in fruits of transgenic tomato plants. By western blot analysis, using specific antibodies, we determined that the VP2 and VP6 produced in plants have molecular weights similar to those found in native rotavirus. The plant-synthesized VP6 protein retained the capacity to form trimers. We were able to recover rotavirus virus-like particles from tomato fruit (i.e., tomatoes) by centrifugation on a sucrose cushion and to visualize them by electron microscopy. This result indicated that VP2/VP6 can self-assemble into virus-like particles (VLPs) in plant cells, even though only a small proportion of VP2/VP6 assembled into VLPs. To investigate immunogenicity, adult mice were immunized intraperitoneally (i.p.) three times with a protein extract from a transgenic tomatoes in adjuvant. We found that the transgenic tomato extract induced detectable levels of anti-rotavirus antibodies in serum; however, we did not determine the contribution of either the free rotavirus proteins or the VLPs to the induction of the antibody response. These results suggest the potential of plant-based rotavirus VLPs for the development of a vaccine against rotavirus infection.
The human immunodeficiency virus type 1 (HIV-1) Tat protein is considered a potential candidate vaccine antigen. In an effort to design a strategy for noninvasive vaccination against HIV-1, we developed transgenic tomatoes expressing the Tat protein. Two independent plants testing positive in transgene detection analysis were selected and grown to maturity. Monoclonal antibodies against Tat recognized a protein of the expected size. Interestingly, expression of Tat seemed to be toxic to the plant, as in all cases the fruit exhibited underdeveloped reproductive structures and no seeds. Nine groups of 10 pathogen-free BALB/c male mice were primed either orally, intraperitoneally, or intramuscularly with 10 mg of tomato fruit extract derived from transgenic or wild-type plants and with 10 g of Tat86 recombinant protein. Mice were immunized at days 0, 14, and 28, and given boosters after 15 weeks; sera were drawn 7 days after each booster, and the antibody titer was determined by enzyme-linked immunosorbent assay. All three immunization approaches induced the development of a strong anti-Tat immunological response, which increased over time. Isotype subclass determination showed the presence of mucosal (immunoglobulin A) immunity soon after the beginning of the oral immunization protocol, and the data were confirmed by the presence of anti-Tat antibodies in fecal pellets and in vaginal washes. We also demonstrated that sera from immunized mice inhibited with high efficiency recombinant Tat-dependent transactivation of the HIV-1 long terminal repeat promoter. This neutralization activity might be relevant for the suppression of extracellular Tat activities, which play an important role in HIV disease development.
Avocado root rot, caused by Phytophthora cinnamomi, is the most important disease that limits avocado production. A proteomic approach was employed to identify proteins that are upregulated by infection with P. cinnamomi. Different proteins were shown to be differentially expressed after challenge with the pathogen by two-dimensional (2-D) gel electrophoresis. A densitometric evaluation of protein expression indicated differential regulation during the time-course analyzed. Some proteins induced in response to the infection were identified by standard peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of the 400 protein spots detected on 2-D gels, 21 seemed to change in abundance by 3 hours after infection. Sixteen proteins were upregulated, 5 of these were only detected in infected roots and 11 showed an increased abundance. Among the differentially expressed proteins identified are homologs to isoflavone reductase, glutathione S-transferase, several abscisic acid stress-ripening proteins, cinnamyl alcohol dehydrogenase, cinnamoyl-CoA reductase, cysteine synthase and quinone reductase. A 17.3-kDa small heat-shock protein and a glycine-rich RNA-binding protein were identified as downregulated. Our group is the first to report on gene induction in response to oomycete infection in roots from avocado, using proteomic techniques.
Transgenic plants have been employed successfully as a low-cost system for the production of therapeutically valuable proteins including antibodies, antigens and hormones. Here, we report expression of a full-length nucleoprotein gene of rabies virus in transgenic tomato plants. The nucleoprotein was also transiently expressed in Nicotiana benthamiana plants by agroinfiltration. In both cases, the nucleoprotein was expressed at high levels, 1-5% of total soluble protein in tomato and 45% in N. benthamiana. Previously, only epitopes of the nucleoprotein had been expressed in plants. The presence and expression of the transgene was verified by PCR, Southern, northern and western blots. Mice were immunized both intraperitoneally (i.p.) and orally with tomato protein extracts containing the N protein induced the production of antibodies. The antibody titer of mice immunized i.p., was at least four times higher than that of mice immunized orally. These results were reflected in the challenge experiments where i.p.-immunized mice were partially protected against a peripheral virus challenge whereas orally immunized mice were not. This protection was comparable to that obtained in previous experiments employing different expression systems. Work is in progress to express both G and N proteins in transgenic plants and evaluate protection in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.