We measure the velocity dispersion, σ, and surface density, Σ, of the molecular gas in nearby galaxies from CO spectral line cubes with spatial resolution 45-120 pc, matched to the size of individual giant molecular clouds. Combining 11 galaxies from the PHANGS-ALMA survey with 4 targets from the literature, we characterize ∼ 30, 000 independent sightlines where CO is detected at good significance. Σ and σ show a strong positive correlation, with the best-fit power law slope close to the expected value for resolved, self-gravitating clouds. This indicates only weak variation in the virial parameter α vir ∝ σ 2 /Σ, which is ∼1.5-3.0 for most galaxies. We do, however, observe enormous variation in the internal turbulent pressure P turb ∝ Σ σ 2 , which spans ∼5 dex across our sample. We find Σ, σ, and P turb to be systematically larger in more massive galaxies. The same quantities appear enhanced in the central kpc of strongly barred galaxies relative to their disks. Based on sensitive maps of M31 and M33, the slope of the σ-Σ relation flattens at Σ 10 M pc −2 , leading to high σ for a given Σ and high apparent α vir . This echoes results found in the Milky Way, and likely originates from a combination of lower beam filling factors and a stronger influence of local environment on the dynamical state of molecular gas in the low density regime.
It remains a major challenge to derive a theory of cloud-scale ( 100 pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially-resolved (∼ 100 pc) CO-to-Hα flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10−30 Myr, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities Σ H 2 8 M pc −2 , the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at Σ H 2 8 M pc −2 GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by Hα (75−90 per cent of the cloud lifetime), GMCs disperse within just 1−5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4−10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally-dependent, dynamical processes driving rapid evolutionary cycling. GMCs and HII regions are the fundamental units undergoing these lifecycles, with mean separations of 100−300 pc in star-forming discs. Future work should characterise the multi-scale physics and mass flows driving these lifecycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.