Background Ninety-four percent of all maternal deaths occur in low- and middle-income countries, and the majority are preventable. Access to quality Obstetric ultrasound can identify some complications leading to maternal and neonatal/perinatal mortality or morbidity and may allow timely referral to higher-resource centers. However, there are significant global inequalities in access to imaging and many challenges to deploying ultrasound to rural areas. In this study, we tested a novel, innovative Obstetric telediagnostic ultrasound system in which the imaging acquisitions are obtained by an operator without prior ultrasound experience using simple scan protocols based only on external body landmarks and uploaded using low-bandwidth internet for asynchronous remote interpretation by an off-site specialist. Methods This is a single-center pilot study. A nurse and care technician underwent 8 h of training on the telediagnostic system. Subsequently, 126 patients (68 second trimester and 58 third trimester) were recruited at a health center in Lima, Peru and scanned by these ultrasound-naïve operators. The imaging acquisitions were uploaded by the telemedicine platform and interpreted remotely in the United States. Comparison of telediagnostic imaging was made to a concurrently performed standard of care ultrasound obtained and interpreted by an experienced attending radiologist. Cohen’s Kappa was used to test agreement between categorical variables. Intraclass correlation and Bland-Altman plots were used to test agreement between continuous variables. Results Obstetric ultrasound telediagnosis showed excellent agreement with standard of care ultrasound allowing the identification of number of fetuses (100% agreement), fetal presentation (95.8% agreement, κ =0.78 (p < 0.0001)), placental location (85.6% agreement, κ =0.74 (p < 0.0001)), and assessment of normal/abnormal amniotic fluid volume (99.2% agreement) with sensitivity and specificity > 95% for all variables. Intraclass correlation was good or excellent for all fetal biometric measurements (0.81–0.95). The majority (88.5%) of second trimester ultrasound exam biometry measurements produced dating within 14 days of standard of care ultrasound. Conclusion This Obstetric ultrasound telediagnostic system is a promising means to increase access to diagnostic Obstetric ultrasound in low-resource settings. The telediagnostic system demonstrated excellent agreement with standard of care ultrasound. Fetal biometric measurements were acceptable for use in the detection of gross discrepancies in fetal size requiring further follow up.
Billions of people around the world lack access to diagnostic imaging. To address this issue, we piloted a comprehensive ultrasound telediagnostic system, which uses ultrasound volume sweep imaging (VSI) acquisitions capable of being performed by operators without prior traditional ultrasound training and new telemedicine software capable of sending imaging acquisitions asynchronously over low Internet bandwidth for remote interpretation. The telediagnostic system was tested with obstetric, right upper quadrant abdominal, and thyroid volume sweep imaging protocols in Peru. Scans obtained by operators without prior ultrasound experience were sent for remote interpretation by specialists using the telemedicine platform. Scans obtained allowed visualization of the target region in 96% of cases with diagnostic imaging quality. This telediagnostic system shows promise in improving health care disparities in the developing world.
Background Hepatic and biliary diseases are prevalent worldwide, but the majority of people lack access to diagnostic medical imaging for their assessment. The liver and gallbladder are readily amenable to sonographic examination, and ultrasound is a portable, cost-effective imaging modality suitable for use in rural and underserved areas. However, the deployment of ultrasound in these settings is limited by the lack of experienced sonographers to perform the exam. In this study, we tested an asynchronous telediagnostic system for right upper quadrant abdominal ultrasound examination operated by individuals without prior ultrasound experience to facilitate deployment of ultrasound to rural and underserved areas. Methods The teleultrasound system utilized in this study employs volume sweep imaging and a telemedicine app installed on a tablet which connects to an ultrasound machine. Volume sweep imaging is an ultrasound technique in which an individual scans the target region utilizing preset ultrasound sweeps demarcated by easily recognized external body landmarks. The sweeps are saved as video clips for later interpretation by an experienced radiologist. Teleultrasound scans from a Peruvian clinic obtained by individuals without prior ultrasound experience were sent to the United States for remote interpretation and quality assessment. Standard of care comparison was made to a same-day ultrasound examination performed by a radiologist. Results Individuals without prior ultrasound experience scanned 144 subjects. Image quality was rated “poor” on 36.8% of exams, “acceptable” on 38.9% of exams, and “excellent” on 24.3% of exams. Among telemedicine exams of “acceptable” or “excellent” image quality (n = 91), greater than 80% of the liver and gallbladder were visualized in the majority of cases. In this group, there was 95% agreement between standard of care and teleultrasound on whether an exam was normal or abnormal, with a Cohen’s kappa of 0.84 (95% CI 0.7–0.98, p <0.0001). Finally, among these teleultrasound exams of “acceptable” or “excellent” image quality, the sensitivity for cholelithiasis was 93% (95% CI 68.1%-99.8%), and the specificity was 97% (95% CI 89.5%-99.6%). Conclusion This asynchronous telediagnostic system allows individuals without prior ultrasound experience to effectively scan the liver, gallbladder, and right kidney with a high degree of agreement with standard of care ultrasound. This system can be deployed to improve access to diagnostic imaging in low-resource areas.
BackgroundTuberculosis (TB) is global health concern and a leading infectious cause of mortality. Reversing TB incidence and disease-related mortality is a major global health priority. Infectious disease mortality is directly linked to failure to adhere to treatments. Using technology to send reminders by short message services have been shown to improve treatment adherence. However, few studies have examined tuberculosis patient perceptions and attitudes towards using SMS technology to increase treatment adherence. In this study, we sought to investigate perceptions related to feasibility and acceptability of using text messaging to improve treatment adherence among adults who were receiving treatment for TB in Callao, Peru.MethodsWe conducted focus group qualitative interviews with current TB positive and non-contagious participants to understand the attitudes, perceptions, and feasibility of using short message service (SMS) reminders to improve TB treatment adherence. Subjects receiving care through the National TB Program were recruited through public health centers in Ventanilla, Callao, Peru. In four focus groups, we interviewed 16 patients. All interviews were recorded and transcribed verbatim. Thematic network analysis and codebook techniques were used to analyze data.ResultsThree major themes emerged from the data: limits on health literacy and information posed challenges to successful TB treatment adherence, treatment motivation at times facilitated adherence to TB treatment, and acceptability of SMS including positive perceptions of SMS to improve TB treatment adherence. The majority of patients shared considerations about how to effectively and confidentially administer an SMS intervention with TB positive participants.ConclusionThe overall perceptions of the use of SMS were positive and indicated that SMS technology may be an efficient way to transmit motivational texts on treatment, health education information, and simple reminders to increase treatment adherence for low-income TB patients living in Peru.
Ultrasound imaging is a vital component of high-quality Obstetric care. In rural and under-resourced communities, the scarcity of ultrasound imaging results in a considerable gap in the healthcare of pregnant mothers. To increase access to ultrasound in these communities, we developed a new automated diagnostic framework operated without an experienced sonographer or interpreting provider for assessment of fetal biometric measurements, fetal presentation, and placental position. This approach involves the use of a standardized volume sweep imaging (VSI) protocol based solely on external body landmarks to obtain imaging without an experienced sonographer and application of a deep learning algorithm (U-Net) for diagnostic assessment without a radiologist. Obstetric VSI ultrasound examinations were performed in Peru by an ultrasound operator with no previous ultrasound experience who underwent 8 hours of training on a standard protocol. The U-Net was trained to automatically segment the fetal head and placental location from the VSI ultrasound acquisitions to subsequently evaluate fetal biometry, fetal presentation, and placental position. In comparison to diagnostic interpretation of VSI acquisitions by a specialist, the U-Net model showed 100% agreement for fetal presentation (Cohen’s κ 1 (p<0.0001)) and 76.7% agreement for placental location (Cohen’s κ 0.59 (p<0.0001)). This corresponded to 100% sensitivity and specificity for fetal presentation and 87.5% sensitivity and 85.7% specificity for anterior placental location. The method also achieved a low relative error of 5.6% for biparietal diameter and 7.9% for head circumference. Biometry measurements corresponded to estimated gestational age within 2 weeks of those assigned by standard of care examination with up to 89% accuracy. This system could be deployed in rural and underserved areas to provide vital information about a pregnancy without a trained sonographer or interpreting provider. The resulting increased access to ultrasound imaging and diagnosis could improve disparities in healthcare delivery in under-resourced areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.