A boron (B) center, which has an electronic structure mimicking the filled and empty d orbitals in transition metals, can effectively activate the triple bond in N 2 so as to catalyze the nitrogen reduction reaction (NRR). Here, by means of density functional theory, we have systematically investigated the catalytic performance of a single B atom decorated on two-dimensional transition metal carbides (MXenes). The B-doped Mo 2 CO 2 and W 2 CO 2 MXenes exhibit outstanding catalytic activity and selectivity with limiting potentials of −0.20 and −0.24 V, respectively. Importantly, we have found that, although a high tendency of B-to-adsorbate electron donation can promote the hydrogenation of *N 2 to *N 2 H, it would also severely hamper the *NH 2 to *NH 3 conversion due to the strong B−N bonding. Such an electron-donation effect can be reasonably tuned by the transition metal in the MXene substrate, which enables us to achieve optimized catalytic performance with a certain moderate degree of electron donation.
Defect engineering on electrode materials is considered an effective approach to improve the electrochemical performance of batteries since the presence of a variety of defects with different dimensions may promote ion diffusion and provide extra storage sites. However, manipulating defects and obtaining an in-depth understanding of their role in electrode materials remain challenging. Here, we deliberately introduce a considerable number of twin boundaries into spinel cathodes by adjusting the synthesis conditions. Through high-resolution scanning transmission electron microscopy and neutron diffraction, the detailed structures of the twin boundary defects are clarified, and the formation of twin boundary defects is attributed to agminated lithium atoms occupying the Mn sites around the twin boundary. In combination with electrochemical experiments and first-principles calculations, we demonstrate that the presence of twin boundaries in the spinel cathode enables fast lithium-ion diffusion, leading to excellent fast charging performance, namely, 75% and 58% capacity retention at 5 C and 10 C, respectively. These findings demonstrate a simple and effective approach for fabricating fast-charging cathodes through the use of defect engineering.
In the process of upgrading energy storage structures, sodium‐ion batteries (SIBs) are regarded as the most promising candidates for large‐scale grid storage systems. However, the difficulty in further improving their specific capacity and lifespan has become a major obstacle to promoting extensive application. Herein, by optimizing synthesis conditions, a biphasic‐Na2/3Ni1/3Mn2/3O2 cathode that exhibits an ultrahigh capacity of ≈200 mAh g‐1 without the involvement of anion redox reactions is successfully synthesized. Nevertheless, there is significant electrochemical performance degradation because of failure at the cathode‐electrolyte interface as revealed by comprehensive analyses. Further in‐depth research proves that the surface side reactions that occur at high operating voltages and the transition metal dissolution that occurs in low voltage are the root causes of electrode surface failure. Therefore, the metal oxide atomic layer deposition (ALD) protective layer is deliberately chosen to suppress such failures. The coating effectively blocks corrosion of the cathode material by the electrolyte and successfully anchors the transition metal ions on the particle surface. As a result, the cycle stability and rate performance of the electrode are improved considerably. This surface engineering strategy could provide concepts with broad applicability for suppressing the failure of sodium layered cathodes.
As one of the most promising cathodes for Li‐ion batteries, Li‐rich layered oxides suffer from low Coulombic efficiency, severe capacity fading, and voltage decay, which are related to the aggregated Li@Mn6 superstructure units. Herein, a Co‐free Li‐rich oxide Li[Li1/4Mn1/2Ni1/6Al1/12]O2 through Al substitution of Co in Li[Li1/4Mn1/2Ni1/6Co1/12]O2, is designed. Combining the average structural refinement with the detailed local structural/chemical analysis, it is found that the introduced Al ions occupy the Mn sites in Li@Mn6 superstructure units, which further induces the partial replacement of the central Li ions in Li@Mn6 units by Ni2+. The modified superstructure units stabilize the anionic framework and suppress structural degradation during long‐term cycling. A superior cyclability (a capacity retention of 91.4% after 500 cycles at 1 C) is achieved. This work not only deepens the understanding into the mechanism of Al substitution, but also provides a novel route to design high‐performance Li‐rich cathodes by modifying the local functional units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.