We explored the mechanism of action of CD39 antibodies that inhibit ectoenzyme CD39 conversion of extracellular ATP (eATP) to AMP and thus potentially augment eATP-P2-mediated proinfl ammatory responses. Using syngeneic and humanized tumor models, we contrast the potency and mechanism of anti-CD39 mAbs with other agents targeting the adenosinergic pathway. We demonstrate the critical importance of an eATP-P2X7-ASC-NALP3infl ammasome-IL18 pathway in the antitumor activity mediated by CD39 enzyme blockade, rather than simply reducing adenosine as mechanism of action. Effi cacy of anti-CD39 activity was underpinned by CD39 and P2X7 coexpression on intratumor myeloid subsets, an early signature of macrophage depletion, and active IL18 release that facilitated the signifi cant expansion of intratumor effector T cells. More importantly, anti-CD39 facilitated infi ltration into T cell-poor tumors and rescued anti-PD-1 resistance. Anti-human CD39 enhanced human T-cell proliferation and Th1 cytokine production and suppressed human B-cell lymphoma in the context of autologous Epstein-Barr virus-specifi c T-cell transfer.
SIGNIFICANCE :Overall, these data describe a potent and novel mechanism of action of antibodies that block mouse or human CD39, triggering an eATP-P2X7-infl ammasome-IL18 axis that reduces intratumor macrophage number, enhances intratumor T-cell effector function, overcomes anti-PD-1 resistance, and potentially enhances the effi cacy of adoptive T-cell transfer.
and T.C.M.F. performed all of the retrovirus transductions and confocal microscopy. J.U. developed the PEPCK tetramer and provided advice on its use. N.G. and W.R.H. produced the Plasmodium peptide-MHC I tetramer and helped design the PbT-I cell-killing assays.
Highlights d Dysfunctional CD226-negative T cells accumulate in mouse and human tumors d CD155 induces ubiquitination via CBL-B and proteasomal degradation of CD226 d A mutation of Y319 maintains CD226 expression and improves anti-tumor immunity d ICB-therapy in melanoma patients relies on the presence of CD226 + CD8 + T cells
Multiple myeloma (MM), the second most common haematological malignancy, is a clonal plasma B-cell neoplasm that forms within the bone marrow. Despite recent advancements in treatment, MM remains an incurable disease. Auranofin, a linear gold(I) phosphine compound, has previously been shown to exert a significant anti-myeloma activity by inhibiting thioredoxin reductase (TrxR) activity. A bis-chelated tetrahedral gold(I) phosphine complex [Au(d2pype)2]Cl (where d2pype is 1,2-bis(di-2-pyridylphosphino)ethane) was previously designed to improve the gold(I) compound selectivity towards selenol- and thiol-containing proteins, such as TrxR. In this study, we show that [Au(d2pype)2]Cl significantly inhibited TrxR activity in both bortezomib-sensitive and resistant myeloma cells, which led to a significant reduction in cell proliferation and induction of apoptosis, both of which were dependent on ROS. In clonogenic assays, treatment with [Au(d2pype)2]Cl completely abrogated the tumourigenic capacity of MM cells, whereas auranofin was less effective. We also show that [Au(d2pype)2]Cl exerted a significant anti-myeloma activity in vivo in human RPMI8226 xenograft model in immunocompromised NOD/SCID mice. The MYC oncogene, known to drive myeloma progression, was downregulated in both in vitro and in vivo models when treated with [Au(d2pype)2]Cl. This study highlights the “proof of concept” that improved gold(I)-based compounds could potentially be used to not only treat MM but as an alternative tool to understand the role of the Trx system in the pathogenesis of this blood disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.