Many diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies on selective degradation of pathogenic proteins via small chimeric molecules linking an E3 ubiquitin ligase to the targeted protein for proteasomal degradation. To this end, we recently developed a protein knockdown system based on hybrid small molecule SNIPERs (pecific and ongeneticAP-dependent roteinasers) that recruit inhibitor of the apoptosis protein (IAP) ubiquitin ligases to specifically degrade targeted proteins. Here, we extend our previous study to show a proof of concept of the SNIPER technology By incorporating a high affinity IAP ligand, we developed a novel SNIPER against estrogen receptor α (ERα), SNIPER(ER)-87, that has a potent protein knockdown activity. The SNIPER(ER) reduced ERα levels in tumor xenografts and suppressed the growth of ERα-positive breast tumors in mice. Mechanistically, it preferentially recruits X-linked IAP (XIAP) rather than cellular IAP1, to degrade ERα via the ubiquitin-proteasome pathway. With this IAP ligand, potent SNIPERs against other pathogenic proteins, BCR-ABL, bromodomain-containing protein 4 (BRD4), and phosphodiesterase-4 (PDE4) could also be developed. These results indicate that forced ubiquitylation by SNIPERs is a useful method to achieve efficient protein knockdown with potential therapeutic activities and could also be applied to study the role of ubiquitylation in many cellular processes.
The modulation of pre‐mRNA splicing is proposed as an attractive anti‐neoplastic strategy, especially for the cancers that exhibit aberrant pre‐mRNA splicing. Here, we discovered that T‐025 functions as an orally available and potent inhibitor of Cdc2‐like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T‐025 reduced CLK‐dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo. Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive‐associated biomarker of T‐025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T‐025 treatment. MYC activation, which altered pre‐mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti‐tumor efficacy of T‐025 in an allograft model of spontaneous, MYC‐driven breast cancer, at well‐tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC‐driven cancer patients.
Protein kinases Aurora A, B, and C play essential roles during mitosis and cell division, are frequently elevated in cancer, and represent attractive targets for therapeutic intervention. TAK-901 is an investigational, multitargeted Aurora B kinase inhibitor derived from a novel azacarboline kinase hinge-binder chemotype. TAK-901 exhibited time-dependent, tight-binding inhibition of Aurora B, but not Aurora A. Consistent with Aurora B inhibition, TAK-901 suppressed cellular histone H3 phosphorylation and induced polyploidy. In various human cancer cell lines, TAK-901 inhibited cell proliferation with effective concentration values from 40 to 500 nmol/L. Examination of a broad panel of kinases in biochemical assays revealed inhibition of multiple kinases. However, TAK-901 potently inhibited only a few kinases other than Aurora B in intact cells, including FLT3 and FGFR2. In rodent xenografts, TAK-901 exhibited potent activity against multiple human solid tumor types, and complete regression was observed in the ovarian cancer A2780 model. TAK-901 also displayed potent activity against several leukemia models. In vivo biomarker studies showed that TAK-901 induced pharmacodynamic responses consistent with Aurora B inhibition and correlating with retention of TAK-901 in tumor tissue. These preclinical data highlight the therapeutic potential of TAK-901, which has entered phase I clinical trials in patients within a diverse range of cancers. Mol Cancer Ther; 12(4); 460-70. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.