Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZAr). However, the genetic variants are highly variable and scattered over the full length of pncA, complicating the development of a molecular test. We performed a large multicenter study assessing pncA sequence variations in 1,950 clinical isolates, including 1,142 multidrug-resistant (MDR) strains and 483 fully susceptible strains. The results of pncA sequencing were correlated with phenotype, enzymatic activity, and structural and phylogenetic data. We identified 280 genetic variants which were divided into four classes: (i) very high confidence resistance mutations that were found only in PZAr strains (85%), (ii) high-confidence resistance mutations found in more than 70% of PZAr strains, (iii) mutations with an unclear role found in less than 70% of PZAr strains, and (iv) mutations not associated with phenotypic resistance (10%). Any future molecular diagnostic assay should be able to target and identify at least the very high and high-confidence genetic variant markers of PZAr; the diagnostic accuracy of such an assay would be in the range of 89.5 to 98.8%.
SummaryBackgroundPyrazinamide and fluoroquinolones are essential antituberculosis drugs in new rifampicin-sparing regimens. However, little information about the extent of resistance to these drugs at the population level is available.MethodsIn a molecular epidemiology analysis, we used population-based surveys from Azerbaijan, Bangladesh, Belarus, Pakistan, and South Africa to investigate resistance to pyrazinamide and fluoroquinolones among patients with tuberculosis. Resistance to pyrazinamide was assessed by gene sequencing with the detection of resistance-conferring mutations in the pncA gene, and susceptibility testing to fluoroquinolones was conducted using the MGIT system.FindingsPyrazinamide resistance was assessed in 4972 patients. Levels of resistance varied substantially in the surveyed settings (3·0–42·1%). In all settings, pyrazinamide resistance was significantly associated with rifampicin resistance. Among 5015 patients who underwent susceptibility testing to fluoroquinolones, proportions of resistance ranged from 1·0–16·6% for ofloxacin, to 0·5–12·4% for levofloxacin, and 0·9–14·6% for moxifloxacin when tested at 0·5 μg/mL. High levels of ofloxacin resistance were detected in Pakistan. Resistance to moxifloxacin and gatifloxacin when tested at 2 μg/mL was low in all countries.InterpretationAlthough pyrazinamide resistance was significantly associated with rifampicin resistance, this drug may still be effective in 19–63% of patients with rifampicin-resistant tuberculosis. Even though the high level of resistance to ofloxacin found in Pakistan is worrisome because it might be the expression of extensive and unregulated use of fluoroquinolones in some parts of Asia, the negligible levels of resistance to fourth-generation fluoroquinolones documented in all survey sites is an encouraging finding. Rational use of this class of antibiotics should therefore be ensured to preserve its effectiveness.FundingBill & Melinda Gates Foundation, United States Agency for International Development, Global Alliance for Tuberculosis Drug Development.
SummaryBackgroundIn many countries, regular monitoring of the emergence of resistance to anti-tuberculosis drugs is hampered by the limitations of phenotypic testing for drug susceptibility. We therefore evaluated the use of genetic sequencing for surveillance of drug resistance in tuberculosis.MethodsPopulation-level surveys were done in hospitals and clinics in seven countries (Azerbaijan, Bangladesh, Belarus, Pakistan, Philippines, South Africa, and Ukraine) to evaluate the use of genetic sequencing to estimate the resistance of Mycobacterium tuberculosis isolates to rifampicin, isoniazid, ofloxacin, moxifloxacin, pyrazinamide, kanamycin, amikacin, and capreomycin. For each drug, we assessed the accuracy of genetic sequencing by a comparison of the adjusted prevalence of resistance, measured by genetic sequencing, with the true prevalence of resistance, determined by phenotypic testing.FindingsIsolates were taken from 7094 patients with tuberculosis who were enrolled in the study between November, 2009, and May, 2014. In all tuberculosis cases, the overall pooled sensitivity values for predicting resistance by genetic sequencing were 91% (95% CI 87–94) for rpoB (rifampicin resistance), 86% (74–93) for katG, inhA, and fabG promoter combined (isoniazid resistance), 54% (39–68) for pncA (pyrazinamide resistance), 85% (77–91) for gyrA and gyrB combined (ofloxacin resistance), and 88% (81–92) for gyrA and gyrB combined (moxifloxacin resistance). For nearly all drugs and in most settings, there was a large overlap in the estimated prevalence of drug resistance by genetic sequencing and the estimated prevalence by phenotypic testing.InterpretationGenetic sequencing can be a valuable tool for surveillance of drug resistance, providing new opportunities to monitor drug resistance in tuberculosis in resource-poor countries. Before its widespread adoption for surveillance purposes, there is a need to standardise DNA extraction methods, recording and reporting nomenclature, and data interpretation.FundingBill & Melinda Gates Foundation, United States Agency for International Development, Global Alliance for Tuberculosis Drug Development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.