The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.
Mass drug administration, particularly the administration of ivermectin, was efficacious for the control of scabies and impetigo. (Funded by the Australian National Health and Medical Research Council; Australian New Zealand Clinical Trials Registry number, ACTRN12613000474752.).
BackgroundScabies is recognised as a major public health problem in many countries, and is responsible for significant morbidity due to secondary bacterial infection of the skin causing impetigo, abscesses and cellulitis, that can in turn lead to serious systemic complications such as septicaemia, kidney disease and, potentially, rheumatic heart disease. Despite the apparent burden of disease in many countries, there have been few large-scale surveys of scabies prevalence or risk factors. We undertook a population-based survey in Fiji of scabies and impetigo to evaluate the magnitude of the problem and inform public health strategies.Methodology/Principal FindingsA total of 75 communities, including villages and settlements in both urban and rural areas, were randomly selected from 305 communities across the four administrative divisions, and all residents in each location were invited to participate in skin examination by trained personnel. The study enrolled 10,887 participants. The prevalence of scabies was 23.6%, and when adjusted for age structure and geographic location based on census data, the estimated national prevalence was 18.5%. The prevalence was highest in children aged five to nine years (43.7%), followed by children aged less than five (36.5%), and there was also an indication of prevalence increasing again in older age. The prevalence of scabies was twice as high in iTaukei (indigenous) Fijians compared to Indo-Fijians. The prevalence of impetigo was 19.6%, with a peak in children aged five to nine years (34.2%). Scabies was very strongly associated with impetigo, with an estimated 93% population attributable risk.ConclusionsAs far as we are aware, this is the first national survey of scabies and impetigo ever conducted. We found that scabies occurs at high levels across all age groups, ethnicities, and geographical locations. Improved strategies are urgently needed to achieve control of scabies and its complications in endemic communities.
Scabies is a parasitic disease of the skin that disproportionately affects disadvantaged populations. Scabies causes considerable morbidity and leads to severe bacterial infection and immune-mediated disease. Recent scientific advances suggest that scabies is amenable to population-level control, particularly through mass drug administration. In recognition of these issues, WHO added scabies to the list of neglected tropical diseases (NTDs) in 2017. In order to develop a global control program, key operational research questions must now be addressed. Standardised approaches to diagnosis and methods for mapping are required to further understand the burden of disease. The safety of treatments for young children, including with ivermectin and moxidectin, should be investigated. Studies are needed to inform optimum implementation of mass treatment, including the threshold for intervention, target, dosing, and frequency. Frameworks for surveillance, monitoring and evaluation of control strategies are also necessary.
Leptospirosis is an important zoonotic disease in the Pacific Islands. In Fiji, two successive cyclones and severe flooding in 2012 resulted in outbreaks with 576 reported cases and 7% case-fatality. We conducted a cross-sectional seroprevalence study and used an eco-epidemiological approach to characterize risk factors and drivers for human leptospirosis infection in Fiji, and aimed to provide an evidence base for improving the effectiveness of public health mitigation and intervention strategies. Antibodies indicative of previous or recent infection were found in 19.4% of 2152 participants (81 communities on the 3 main islands). Questionnaires and geographic information systems data were used to assess variables related to demographics, individual behaviour, contact with animals, socioeconomics, living conditions, land use, and the natural environment. On multivariable logistic regression analysis, variables associated with the presence of Leptospira antibodies included male gender (OR 1.55), iTaukei ethnicity (OR 3.51), living in villages (OR 1.64), lack of treated water at home (OR 1.52), working outdoors (1.64), living in rural areas (OR 1.43), high poverty rate (OR 1.74), living <100m from a major river (OR 1.41), pigs in the community (OR 1.54), high cattle density in the district (OR 1.04 per head/sqkm), and high maximum rainfall in the wettest month (OR 1.003 per mm). Risk factors and drivers for human leptospirosis infection in Fiji are complex and multifactorial, with environmental factors playing crucial roles. With global climate change, severe weather events and flooding are expected to intensify in the South Pacific. Population growth could also lead to more intensive livestock farming; and urbanization in developing countries is often associated with urban and peri-urban slums where diseases of poverty proliferate. Climate change, flooding, population growth, urbanization, poverty and agricultural intensification are important drivers of zoonotic disease transmission; these factors may independently, or potentially synergistically, lead to enhanced leptospirosis transmission in Fiji and other similar settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.