Biocompatibility remains the central theme for biomaterials applications in medicine. It is generally accepted that this term means not only absence of a cytotoxic effect but also positive effects in the sense of biofunctionality, i.e. promotion of biological processes which further the intended aim of the application of a biomaterial. The national and international standards for testing regimes represent a lowest common denominator for such applications and do not necessarily ensure that optimal function will be achieved. The authors' thesis is that biocompatibility testing has scope for extensive development with respect to biofunctionality. The present paper reviews current trends in the in vitro aspects of biocompatibility testing. As well as a critical appraisal of the recent literature, future trends are also stressed, which the authors regard as essential for a meaningful integration of a modern biological approach into new developments in the material sciences. These include the application of modern techniques of cell and molecular biology, the concepts of tissue remodelling, hybrid organ development and encapsulated cell technology.
The activation of poly (ADP-ribose) synthetase (PARS) subsequent to DNA damage caused by reactive oxygen or nitrogen species has been implicated in several pathophysiological conditions, including ischemia-reperfusion injury and shock. The aim of this study was to investigate whether PARS inhibitors could provide protection against renal ischemia-reperfusion injury in the rat in vivo. Male Wistar rats were subjected to 45 min bilateral clamping of the renal pedicles, followed by 6 h reperfusion (control animals). Animals were administered the PARS inhibitors 3-aminobenzamide, 1, 5-dihydroxyisoquinoline, or nicotinamide during the reperfusion period. Ischemia, followed by reperfusion, produced significant increases in plasma concentrations of urea, creatinine, and fractional excretion of Na(+) (FE(Na)) and produced a significant reduction in glomerular filtration rate (GFR). However, administration of the PARS inhibitors significantly reduced urea and creatinine concentrations, suggesting improved renal function. The PARS inhibitors also significantly increased GFR and reduced FE(Na), suggesting the recovery of both glomerular and tubular function, respectively, with a more pronounced recovery of tubular function. In kidneys from control animals, histological examination revealed severe renal damage and immunohistochemical localization demonstrated PARS activation in the proximal tubule. Both renal damage and PARS activation were attenuated by administration of PARS inhibitors during reperfusion. Therefore, we propose that PARS activation contributes to renal reperfusion injury and that PARS inhibitors may be beneficial in renal disorders associated with oxidative stress-mediated injury.
Diagnosis of the origin of metastasis is mandatory for adequate therapy. In the past, classification of tumors was based on histology (morphological expression of a complex protein pattern), while supportive immunohistochemical investigation relied only on few "tumor specific" proteins. At present, histopathological diagnosis is based on clinical information, morphology, immunohistochemistry, and may include molecular methods. This process is complex, expensive, requires an experienced pathologist and may be time consuming. Currently, proteomic methods have been introduced in various clinical disciplines. MALDI imaging MS combines detection of numerous proteins with morphological features, and seems to be the ideal tool for objective and fast histopathological tumor classification. To study a special tumor type and to identify predictive patterns that could discriminate metastatic breast from pancreatic carcinoma MALDI imaging MS was applied to multitissue paraffin blocks. A statistical classification model was created using a training set of primary carcinoma biopsies. This model was validated on two testing sets of different breast and pancreatic carcinoma specimens. We could discern breast from pancreatic primary tumors with an overall accuracy of 83.38%, a sensitivity of 85.95% and a specificity of 76.96%. Furthermore, breast and pancreatic liver metastases were tested and classified correctly.
Objective To identify and image protein biomarker candidates in the synovial tissue of patients with rheumatoid arthritis (RA) and patients with osteoarthritis (OA). Methods A novel matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) technique was applied to the analysis of synovial tissue. Patients were classified according to the American College of Rheumatology (ACR) criteria for RA. Frozen sections were stained to obtain morphological data. Serial sections were desiccated, and spotted with matrix for MALDI analysis. Ions generated by laser irradiation of the tissue were separated in time, based on their m/z ratio, and were subsequently detected. IMS was used in a ‘profiling’ mode to detect discrete spots for rapid evaluation of proteomic patterns in various tissue compartments. Photomicrographs of the stained tissue images were reviewed by a pathologist. Areas of interest (10 discrete areas/compartment) were marked digitally and the histology-annotated images were merged to form a photomicrograph of the section taken before the MALDI measurement. Pixel coordinates of these areas were transferred to a robotic spotter, the matrix was spotted, and the coordinates of the spots were transferred to a mass spectrometer for spectral acquisition. The data generated were then subjected to biocomputation analysis to reveal the biomarker candidates. Results Several peaks (m/z) consistent in mass with calgranulins, defensins, and thymosins were detected and their distribution in various synovial compartments (synovial lining and sublining layer) was demonstrated. Conclusion MALDI IMS is a powerful tool for the rapid detection of numerous proteins (in situ proteomics) and was applied here for the analysis of the distribution of proteins in synovial tissue sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.