Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO 2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 1C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO 2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO 2 carbon fluxes are not presently being adequately accounted for. Nomenclauture:DOC 5 dissolved organic carbon; fNPP 5 foliage component of NPP; GPP 5 gross primary production (GPP40 denotes photosynthetic uptake); mNPP 5 missing component of NPP;NBP 5 net biome production (NBP40 denotes biome uptake); NECB 5 net ecosystem carbon balance (NECB40 denotes ecosystem uptake); NEE 5 net ecosystem exchange (NEE40 denotes ecosystem uptake); NEP 5 net ecosystem production (NEP40 denotes ecosystem uptake); NPP 5 net primary production (NPP40 denotes ecosystem uptake); R a 5 autotrophic respiration (R a 40 denotes respiratory losses); R e 5 ecosystem respiration (R e 40 denotes respiratory losses); R h 5 heterotrophic respiration (R h 40 denotes respiratory losses); rNPP 5 root component of NPP;R s 5 soil respiration (R s 40 denotes respiratory losses); VOC 5 volatile organic compounds; wNPP 5 wood component of NPP
Understanding relationships between canopy structure and the seasonal dynamics of photosynthetic uptake of CO(2) by forest canopies requires improved knowledge of canopy phenology at eddy covariance flux tower sites. We investigated whether digital webcam images could be used to monitor the trajectory of spring green-up in a deciduous northern hardwood forest. A standard, commercially available webcam was mounted at the top of the eddy covariance tower at the Bartlett AmeriFlux site. Images were collected each day around midday. Red, green, and blue color channel brightness data for a 640 x 100-pixel region-of-interest were extracted from each image. We evaluated the green-up signal extracted from webcam images against changes in the fraction of incident photosynthetically active radiation that is absorbed by the canopy (f (APAR)), a broadband normalized difference vegetation index (NDVI), and the light-saturated rate of canopy photosynthesis (A(max)), inferred from eddy flux measurements. The relative brightness of the green channel (green %) was relatively stable through the winter months. A steady rising trend in green % began around day 120 and continued through day 160, at which point a stable plateau was reached. The relative brightness of the blue channel (blue %) also responded to spring green-up, although there was more day-to-day variation in the signal because blue % was more sensitive to changes in the quality (spectral distribution) of incident radiation. Seasonal changes in blue % were most similar to those in f (APAR) and broadband NDVI, whereas changes in green % proceeded more slowly, and were drawn out over a longer period of time. Changes in A(max) lagged green-up by at least a week. We conclude that webcams offer an inexpensive means by which phenological changes in the canopy state can be quantified. A network of cameras could offer a novel opportunity to implement a regional or national phenology monitoring program.
Concern is resurfacing in the United States over the long-term effects of excess nitrogen (N) deposition
All Australian land mammals, reptiles, and birds weighing more than 100 kilograms, and six of the seven genera with a body mass of 45 to 100 kilograms, perished in the late Quaternary. The timing and causes of these extinctions remain uncertain. We report burial ages for megafauna from 28 sites and infer extinction across the continent around 46,400 years ago (95% confidence interval, 51,200 to 39,800 years ago). Our results rule out extreme aridity at the Last Glacial Maximum as the cause of extinction, but not other climatic impacts; a "blitzkrieg" model of human-induced extinction; or an extended period of anthropogenic ecosystem disruption.
The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO 2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO 2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle-climate models.nitrogen cycle ͉ climate change ͉ foliar nitrogen ͉ ecosystem-climate feedback ͉ remote sensing T errestrial ecosystems influence the Earth's climate through regulation of mass and energy exchange with the atmosphere. In recent years, much of the focus has been directed toward factors affecting the Ϸ1-to 2-Pg carbon (C) sink that is believed to exist in the terrestrial biosphere (1). Candidate mechanisms include forest regrowth after agricultural abandonment (2) and growth enhancement from nitrogen (N) deposition and/or elevated CO 2 (3, 4). In each case, interactions between C and N play a central role. Observations of N limitations to productivity are widespread (5), and responses to experimental CO 2 fertilization are often restricted by N availability (6-8). Although evidence of an N deposition effect on net C exchange has only recently been documented (4), the importance of N as a regulator of C assimilation is well established through the widely observed relationship between leaf-level photosynthetic capacity (A max ) and foliar N concentrations (9-11). Despite this understanding, few analyses have included continuous variation in plant N status as a driver of C cycle processes at regional to global scales. There are at least 2 reasons for this. First, because evidence for the photosynthesis-foliar N relationship comes predominantly from leaf-level observations, there is uncertainty about whether similar trends occur over whole-plant canopies or whether canopy-level factors such as leaf area index (LAI) become dominant at this scale. Second, although many ecosystem models simulate plant and soil N dynamics, there are no widely available methods for obtaining mapped foliar N estimates over ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.