Angular distributions of the decay B 0 → K * 0 µ + µ − are studied using a sample of proton-proton collisions at √ s = 8 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb −1 . An angular analysis is performed to determine the P 1 and P 5 parameters, where the P 5 parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the P 1 and P 5 parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model.
Despite the recent availability of vaccines against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the search for inhibitory therapeutic agents has assumed importance especially in the context of emerging new viral variants. In this paper, we describe the discovery of a novel noncovalent smallmolecule inhibitor, MCULE-5948770040, that binds to and inhibits the SARS-Cov-2 main protease (M pro ) by employing a scalable high-throughput virtual screening (HTVS) framework and a targeted compound library of over 6.5 million molecules that could be readily ordered and purchased. Our HTVS framework leverages the U.S. supercomputing infrastructure achieving nearly 91% resource utilization and nearly 126 million docking calculations per hour. Downstream biochemical assays validate this M pro inhibitor with an inhibition constant (K i ) of 2.9 μM (95% CI 2.2, 4.0). Furthermore, using room-temperature X-ray crystallography, we show that MCULE-5948770040 binds to a cleft in the primary binding site of M pro forming stable hydrogen bond and hydrophobic interactions. We then used multiple μs-time scale molecular dynamics (MD) simulations and machine learning (ML) techniques to elucidate how the bound ligand alters the conformational states accessed by M pro , involving motions both proximal and distal to the binding site. Together, our results demonstrate how MCULE-5948770040 inhibits M pro and offers a springboard for further therapeutic design.
A peaking structure in the J/ψφ mass spectrum near threshold is observed in B ± → J/ψφK ± decays, produced in pp collisions at √ s = 7 TeV collected with the CMS detector at the LHC. The data sample, selected on the basis of the dimuon decay mode of the J/ψ, corresponds to an integrated luminosity of 5.2 fb −1 . Fitting the structure to an S-wave relativistic Breit-Wigner lineshape above a three-body phase-space nonresonant component gives a signal statistical significance exceeding five standard deviations. The fitted mass and width values are m = 4148.0 ± 2.4 (stat.) ± 6.3 (syst.) MeV and Γ = 28 +15 −11 (stat.) ± 19 (syst.) MeV, respectively. Evidence for an additional peaking structure at higher J/ψφ mass is also reported.Events are chosen using a two-level trigger system. The first level, composed of custom hardware processors, uses information from the muon detectors to select dimuon candidates. The high-level trigger (HLT) runs a special version of the offline software code on a processor farm to select events with nonprompt J/ψ candidates coming from the decays of B mesons.Events containing J/ψ candidates are selected by the HLT dimuon trigger. Because of the increasing LHC instantaneous luminosity, there are two configurations of the HLT, corresponding to two running periods and two distinct data sets. For both data sets, the following require- B The CMS Collaboration
Despite the recent availability of vaccines against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the search for inhibitory therapeutic agents has assumed importance especially in the context of emerging new viral variants. In this paper, we describe the discovery of a novel non-covalent small-molecule inhibitor, MCULE-5948770040, that binds to and inhibits the SARS-Cov-2 main protease (Mpro) by employing a scalable high throughput virtual screening (HTVS) framework and a targeted compound library of over 6.5 million molecules that could be readily ordered and purchased. Our HTVS framework leverages the U.S. supercomputing infrastructure achieving nearly 91% resource utilization and nearly 126 million docking calculations per hour. Downstream biochemical assays validate this Mpro inhibitor with an inhibition constant (Ki) of 2.9 uM [95% CI 2.2, 4.0]. Further, using room-temperature X-ray crystallography, we show that MCULE-5948770040 binds to a cleft in the primary binding site of Mpro forming stable hydrogen bond and hydrophobic interactions. We then used multiple μs-timescale molecular dynamics (MD) simulations, and machine learning (ML) techniques to elucidate how the bound ligand alters the conformational states accessed by Mpro, involving motions both proximal and distal to the binding site. Together, our results demonstrate how MCULE-5948770040 inhibits Mpro and offers a springboard for further therapeutic design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.