Cystic fibrosis (CF) lung disease features persistent neutrophil accumulation to the airways from the time of infancy. CF children are frequently exposed to Pseudomonas aeruginosa, and by adulthood, 80% of CF patients are chronically infected. The formation of biofilms is a particularly important phenotypic characteristic of P. aeruginosa that allows for bacterial survival despite aggressive antibiotic therapy and an exuberant immune response. Here, we show that the presence of neutrophils enhances initial P. aeruginosa biofilm development over a period of 72 h through the formation of polymers comprised of actin and DNA. F-actin was found to be a site of attachment for P. aeruginosa. These actin and DNA polymers are present in CF sputum, and disruption of the polymers dispersed the associated P. aeruginosa cells and reduced biofilm development. These findings demonstrate a potential maladaptation of the primary innate response. When the host fails to eradicate the infection, cellular components from necrotic neutrophils can serve as a biological matrix to facilitate P. aeruginosa biofilm formation.
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa.
IL-32, a proinflammatory cytokine that activates the p38MAPK and NF-κB pathways, induces other cytokines, for example, IL-1β, IL-6, and TNF-α. This study investigated the role of endogenous IL-32 in HIV-1 infection by reducing IL-32 with small interfering (si)RNA in freshly infected PBMC and in the latently infected U1 macrophage cell line. When PBMC were pretreated with siRNA to IL-32 (siIL-32), IL-6, IFN-γ, and TNF-α were reduced by 57, 51, and 36%, respectively, compared with scrambled siRNA. Cotransfection of NF-κB and AP-1 reporter constructs with siIL-32 decreased DNA binding of these transcription factors by 42 and 46%, respectively. Cytokine protein array analysis revealed that the inhibitory activity of siIL-32 primarily targeted Th1 and proinflammatory cytokines and chemokines, e.g., MIP-1α/β. Unexpectedly, HIV-1 production (as measured by p24) increased 4-fold in these same PBMC when endogenous IL-32 was reduced. Because IFN-γ was lower in siIL-32-treated PBMC, we blocked IFN-γ bioactivity, which enhanced the augmentation of p24 by siIL-32. Furthermore, siIL-32 reduced the natural ligands of the HIV-1 coreceptors CCR5 (MIP-1α/β and RANTES) and CXCR4 (SDF-1). Inhibition of endogenous IL-32 in U1 macrophages also increased HIV-1. When rhIL-32γ was added to these cells, p24 levels fell by 72%; however, in the same cultures IFN-α increased 4-fold. Blockade of IFN-α/β bioactivity in IL-32γ-stimulated U1 cells revealed that IFN-α conveys the anti-HIV-1 effect of rhIL-32γ. In summary, depletion of endogenous IL-32 reduced the levels of Th1 and proinflammatory cytokines but paradoxically increased p24, proposing IL-32 as a natural inhibitor of HIV-1.
Although the median survival for patients with cystic fibrosis (CF) is 32.9 years, a small group of patients live much longer. We analyzed the genotype and phenotype of CF patients 40 years and older seen between 1992 and 2004 at the National Jewish Medical and Research Center (n = 55). These patients were divided into two groups according to age at diagnosis: an early diagnosis (ED) group, median age at diagnosis 2.0 years (range 0.1-15 years, n = 28), and a late diagnosis (LD) group, median age of diagnosis 48.8 years (range 24-72.8 years, n = 27). Consistent with the hypothesis that the CFTR genotype affects the age at diagnosis, CFTR DeltaF508 homozygous individuals were more common in the ED group. Although patients in the ED group were predominantly male, the majority of LD patients were female. Patients with CF diagnosed late had a significantly lower prevalence of pancreatic insufficiency and CF-related diabetes, and better lung function. Fewer patients in the LD groups were infected with Pseudomonas aeruginosa, whereas a greater percentage had cultures positive for nontuberculous mycobacteria. This is the largest cohort of older patients with CF described to date, and our findings indicate that patients diagnosed as adults differ distinctly from survivors of long-term CF diagnosed as children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.