Inflammatory bowel disease (IBD), manifesting as Crohn's disease (CD) and ulcerative colitis (UC), is characterized by recurring episodes of inflammation in gastrointestinal tract, in which aberrant production of regulatory cytokine interleukin-10 (IL-10) presumably plays important role. Single nucleotide polymorphisms (SNPs) that affect IL-10 production, such as rs1800896 (G/A) at position -1082 and rs1800871 (C/T) at position -819 in the promoter region of the IL10 gene, have been associated with CD and/or UC, but the results were inconsistent. Another SNP that may alter IL-10 production, rs3024505 (C/ T) located immediately downstream of the IL10 gene has been recently identified. T allele of rs3024505 was associated with both UC and CD in Western populations, but the studies from East European countries are lacking. Therefore, our aim was to assess the association of rs3024505, rs1800896 and rs1800871 with Serbian IBD patients. To this end, 107 CD and 99 UC patients and 255 healthy controls were genotyped. As a result, T allele of rs3024505 was associated with CD at allelic, genotypic (GT genotype) and haplotypic (GCCT haplotype) level, suggesting potential role of this variant in susceptibility to CD. In contrast, CD patients carrying C allele of rs3024505 had significantly increased risk of anemia and stricturing/penetrating behavior. No association was observed between rs3024505 and UC or SNPs in IL10 promoter region and any form of IBD. In conclusion, rs3024505 SNP flanking the IL10 gene is associated with susceptibility and severity of disease in Serbian CD patients, further validating its role as a potential biomarker in IBD.
Despite remarkable progress in survival of children with acute lymphoblastic leukemia (ALL) which has reached about 85%, early toxicity and relapse rate remain issues that need to to be resolved. Genetic variants are important factors influencing the metabolism of cytotoxic drugs in ALL treatment. Variants in genes coding for methotrexate (MTX)-metabolizing enzymes are under constant scientific interest due to their potential impact on drug toxicity and relapse rate. We investigated methylenetetrahydrofolate reductase (MTHFR) c.677C>T and MTHFR c.1298A>C variants as pharmacogenetic markers of MTX toxicity and predictors of relapse. The study enrolled 161 children with ALL, treated according to the current International Berlin-Frankfurt-Munster group (BFM) for diagnostics and treatment of leukemia and lymphoma protocols. Genotyping was performed using PCR-RFLP and allele-specific PCR assays. Our results revealed similar distributions of MTHFR c.677C>T and MTHFR c.1298A>C genotypes among 104 healthy individuals as compared to pediatric ALL patients. A lower incidence of early MTX toxicity was noted in the MTHFR c.677TT genotype (p=0.017), while MTHFR c.1298A>C genotypes were not associated with MTX toxicity. Carriers of any MTHFR c.677C>T and MTHFR c.1298A>C genotypes did not experience decreased overall survival (OAS) or higher relapse rates. Genetic variants in the MTHFR gene are not involved in leukemogenesis in pediatric ALL. The presence of the MTHFR c.677TT genotype was recognized as a predictive factor for decreased MTX toxicity during the intensification phase of therapy. Neither MTHFR c.677C>T nor MTHFR c.1298A>C genotypes correlated with an increased number of toxic deaths or relapse rate. Our study emphasizes the importance of implementing pharmacogenetic markers in order to optimize pediatric ALL therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.