Context. Light and spectrum variations of the magnetic chemically peculiar (mCP) stars are explained by the oblique rigid rotator model with a rotation period usually assumed to be stable on a long time scale. A few exceptions, such as CU Vir or 56 Ari, have been reported as displaying an increase in their rotation period. A possible increase in the period of light and spectrum variations has also been suggested from observations of the helium-strong mCP star HD 37776 (V901 Ori). Aims. In this paper we attempt to confirm the possible period change of HD 37776 and discuss a possible origin of this change as a consequence of i) duplicity; ii) precession; iii) evolutionary changes; and iv) continuous/discrete/transient angular momentum loss. Results. We confirm the previously suspected gradual increase in the 1. d 5387 period of HD 37776 and find that it has lengthened by a remarkable 17.7 ± 0.7 s over the past 31 years. We also note that a decrease in the rate of the period change is not excluded by the data. The shapes of light curves in all colours were found to be invariable. Conclusions. After ruling out light-time effects in a binary star, precession of the rotational axis, and evolutionary changes as possible causes for the period change, we interpret this ongoing period increase as a braking of the star's rotation, at least in its surface layers, due to the momentum loss through events or processes in the extended stellar magnetosphere.
Context. The majority of magnetic chemically peculiar (mCP) stars exhibit periodic light, radio, spectroscopic and spectropolarimetric variations that can be adequately explained by the model of a rigidly rotating main-sequence star with persistent surface structures. CU Vir and V901 Ori belong among these few mCP stars whose rotation periods vary on timescales of decades. Aims. We aim to study the stability of the periods in CU Vir and V901 Ori using all accessible observational data containing phase information. Methods. We collected all available relevant archived observations supplemented with our new measurements of these stars and analysed the period variations of the stars using a novel method that allows for the combination of data of diverse sorts. Results. We found that the shapes of their phase curves were constant during the last several decades, while the periods were changing. At the same time, both stars exhibit alternating intervals of rotational braking and acceleration. The rotation period of CU Vir was gradually shortening until the year 1968, when it reached its local minimum of 0.52067198 d. The period then started increasing, reaching its local maximum of 0.5207163 d in the year 2005. Since that time the rotation has begun to accelerate again. We also found much smaller period changes in CU Vir on a timescale of several years. The rotation period of V901 Ori was increasing for the past quarter-century, reaching a maximum of 1.538771 d in the year 2003, when the rotation period began to decrease. Conclusions. We propose that dynamical interactions between a thin, outer magnetically-confined envelope, braked by the stellar wind, with an inner, faster rotating stellar body is able to explain the observed rotational variability. A theoretically unexpected alternating variability of rotation periods in these stars would remove the spin-down time paradox and brings a new insight into structure and evolution of magnetic upper-main-sequence stars.
Context. Despite the importance of magnetic fields to a full understanding of the properties of accreting Herbig Ae/Be stars, these fields have scarcely been studied until now over the rotation cycle. One reason for the paucity of these observations is the lack of knowledge of their rotation periods. The sharp-lined young Herbig Ae star HD 101412 with a strong surface magnetic field has become in the past few years one of the most well-studied targets among the Herbig Ae/Be stars. Aims. We present our multi-epoch polarimetric spectra of this star acquired with FORS 2 to search for a rotation period and constrain the geometry of the magnetic field. Methods. We measured longitudinal magnetic fields for 13 different epochs distributed over 62 days. These new measurements and our previous measurements of the magnetic field in this star were combined with available photometric observations to determine the rotation period. Results. We find the rotation period to be P = 42.076 ± 0.017 d. According to near-infrared imaging studies, the star is observed nearly edge-on. The star exhibits a single-wave variation in the longitudinal magnetic field during the stellar rotation cycle. These observations are usually considered as evidence of a dominant dipolar contribution to the magnetic field topology.
We present our extensive project of the On-line database of photometric observations of magnetic chemically peculiar stars to collect published data of photometric observations of magnetic chemically peculiar (mCP) stars in the optical and near IR regions. Now the nascent database contains more than 107 000 photometric measurements of 102 mCP stars and will be continually supplemented with published or new photometric data on these and about 150 additional mCP stars. This report describes the structure and organization of the database. Moreover, for the all included data we estimated the error of measurements and the effective amplitudes of the light curves.
Aims. About thirty new times of minimum light recorded with photoelectric or CCD photometers were obtained for four earlytype eccentric-orbit eclipsing binaries CW Cep (P = 2. Their O−C diagrams were analysed using all reliable timings found in the literature, and elements of apsidal motion were improved. Results. We confirm relatively short periods of apsidal motion of about 46, 27, 76, and 124 years for CW Cep, V478 Cyg, AG Per, and IQ Per, respectively. The corresponding internal structure constants, log k 2 , are then found to be -2.12, -2.25, -2.15, and -2.36, under the assumption that the component stars rotate pseudosynchronously. The relativistic effects are negligible, being up to 8% of the total apsidal motion rate in all systems. Using the light-time effect solution, we have predicted a faint third component orbiting with a period of about 39 years for CW Cep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.