The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.
Purpose: Hereditary Breast and Ovarian Cancer (HBOC) syndrome is responsible for ∼5-10% of all diagnosed breast and ovarian cancers. Breast cancer is the most common malignancy and the leading cause of cancer-related mortality among women in Latin America (LA). The main objective of this study was to develop a comprehensive understanding of the genomic epidemiology of HBOC throughout the establishment Oliver et al. Latin American HBOC Study of The Latin American consortium for HBOC-LACAM, consisting of specialists from 5 countries in LA and the description of the genomic results from the first phase of the study. Methods: We have recruited 403 individuals that fulfilled the criteria for HBOC from 11 health institutions of Argentina, Colombia, Guatemala, Mexico and Peru. A pilot cohort of 222 individuals was analyzed by NGS gene panels. One hundred forty-three genes were selected on the basis of their putative role in susceptibility to different hereditary cancers. Libraries were sequenced in MiSeq (Illumina, Inc.) and PGM (Ion Torrent-Thermo Fisher Scientific) platforms. Results: The overall prevalence of pathogenic variants was 17% (38/222); the distribution spanned 14 genes and varied by country. The highest relative prevalence of pathogenic variants was found in patients from Argentina (25%, 14/57), followed by Mexico (18%, 12/68), Guatemala (16%, 3/19), and Colombia (13%, 10/78). Pathogenic variants were found in BRCA1 (20%) and BRCA2 (29%) genes. Pathogenic variants were found in other 12 genes, including high and moderate risk genes such as MSH2, MSH6, MUTYH, and PALB2. Additional pathogenic variants were found in HBOC unrelated genes such as DCLRE1C, WRN, PDE11A, and PDGFB. Conclusion: In this first phase of the project, we recruited 403 individuals and evaluated the germline genetic alterations in an initial cohort of 222 patients among 4 countries. Our data show for the first time in LA the distribution of pathogenic variants in a broad set of cancer susceptibility genes in HBOC. Even though we used extended gene panels, there was still a high proportion of patients without any detectable pathogenic variant, which emphasizes the larger, unexplored genetic nature of the disease in these populations.
SummaryDNA of phytoplasmas in lethal yellowing (LY)‐diseased palms was detected by a nested polymerase chain reaction (PCR) assay employing rRNA primer pair P1/P7 followed by primer pair LY16Sf/ LY16‐23Sr. Polymorphisms revealed by Hinfl endonuclease digestion of rDNA products differentiated coconut‐infecting phytoplasmas in Jamaica from those detected in palms in Florida, Honduras and Mexico. A three fragment profile was generated for rDNA from phytoplasmas infecting all 21 Jamaican palms whereas a five fragment profile was evident for phytoplasmas infecting the majority of Florida (20 of 21), Honduran (13 of 14) and Mexican (5 of 5) palms. The RFLP profile indicative of Florida LY phytoplasma was resolved by cloning into two patterns, one of three bands and the other of four bands, that together constituted the five fragment profile. The two patterns were attributed to presence of two sequence heterogeneous rRNA operons, rrnA and rrnB, in most phytoplasmas composing Florida, Honduran and Mexican LY strain populations. Unique three and four fragment RFLP profiles indicative of LY phytoplasmas infecting Howea forsteriana and coconut palm in Florida and Honduras, respectively, were also observed. By comparison, the Jamaican LY phytoplasma population uniformly contained one or possibly two identical rRNA operons. No correlation between rRNA interoperon heterogeneity and strain variation in virulence of the LY agent was evident from this study.
We conducted a hospital-based case-control study in Peru of 198 women with histologically confirmed cervical cancer (173 squamous cell carcinomas and 25 cases of adenocarcinoma/adenosquamous carcinoma) and 196 control women. Information on risk factors was obtained by personal interview. Using PCR-based assays on exfoliated cervical cells and biopsy specimens, HPV DNA was detected in 95.3% of women with squamous cell carcinoma and in 92.0% of women with adenocarcinoma/adenosquamous carcinoma compared with 17.7% in control women. The age-adjusted odds ratio was 116.0 (95% Cl = 48.6–276.0) for squamous cell carcinoma and 51.4 (95% Cl = 11.4–232.0) for adenocarcinoma/adenosquamous carcinoma. The commonest types in women with cervical cancer were HPV 16, 18, 31, 52 and 35. The association with the various HPV types was equally strong for the two most common types (HPV 16 and 18) as for the other less common types. In addition to HPV, long-term use of oral contraceptives and smoking were associated with an increased risk. HPV is the main cause of both squamous cell carcinoma and adenocarcinoma in Peruvian women. © 2001 Cancer Research Campaign http://www.bjcancer.com
Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.