Warfarin, a commonly prescribed anticoagulant, exhibited large inter-individual and inter-ethnic differences in the dose required for its anticoagulation effect. Asian populations, including Chinese, require a much lower maintenance dose than Caucasians, for which the mechanisms still remain unknown. We determined DNA sequence variants in CYP2C9 and VKORC1 in 16 Chinese patients having warfarin sensitivity (< or = 1.5 mg/day, n = 11) or resistance (> or = 6.0 mg/day, n = 5), 104 randomly selected Chinese patients receiving warfarin, 95 normal Chinese controls and 92 normal Caucasians. We identified three CYP2C9 variants, CYP2C9*3, T299A and P382L, in four warfarin-sensitive patients. A novel VKORC1 promoter polymorphism (-1639 G > A) presented in the homozygous form (genotype AA) was found in all warfarin-sensitive patients. The resistant patients were either AG or GG. Among the 104 randomly selected Chinese patients receiving warfarin, AA genotype also had lower dose than the AG/GG genotype (P < 0.0001). Frequencies of AA, AG and GG genotypes were comparable in Chinese patients receiving warfarin (79.7, 17.6 and 2.7%) and normal Chinese controls (82, 18 and 0%), but differed significantly from Caucasians (14, 47 and 39%) (P < 0.0001). The promoter polymorphism abolished the E-box consensus sequences and dual luciferase assay revealed that VOKRC1 promoter with the G allele had a 44% increase of activity when compared with the A allele. The differences in allele frequencies of A/G allele and its levels of VKORC1 promoter activity may underscore the inter-individual differences in warfarin dosage as well as inter-ethnic differences between Chinese and Caucasians.
Polymorphisms in CYP2C9 and VKORC1 have been shown to be associated with warfarin dose requirements and could be used to predict warfarin dose. We conducted a prospective study in which warfarin dose was prescribed based on CYP2C9 and VKORC1 polymorphisms in 108 Han-Chinese patients without prior warfarin treatments. Using the genotype-based dosing, 83% of patients reached stable, therapeutic international normalized ratio (INR) within 2 weeks of treatment initiation and none of the patients developed clinical bleeding or thromboembolic event. Ten percent (11) of patients with INR > 4 and no clinical bleeding were detected during this study. At 12 weeks, 69% of the patients' maintenance doses matched the prediction. Dosing algorithms incorporating genetic factors, age, and body surface area were developed, which could explain up to 62% of the total variation (R(2) of 0.62). This study demonstrated that pharmacogenetics-based dosing could improve time to stable, therapeutic INR, reduce adverse events, and achieve high sensitivity.
In Taiwan, the prevalence of hyperlipidemia increased due to lifestyle and dietary habit changes. Low density lipoprotein cholesterol (LDL-C) and non-high density lipoprotein cholesterol (non-HDL-C) are all significant predicting factors of coronary artery disease in Taiwan. We recognized that lipid control is especially important in patients with existed atherosclerotic cardiovascular diseases (ASCVD), including coronary artery disease (CAD), ischemic stroke and peripheral arterial disease (PAD). Because the risk of ASCVD is high in patients with diabetes mellitus (DM), chronic kidney disease (CKD) and familial hypercholesterolemia (FH), lipid control is also necessary in these patients. Lifestyle modification is the first step to control lipid. Weight reduction, regular physical exercise and limitation of alcohol intake all reduce triglyceride (TG) levels. Lipid-lowering drugs include HMG-CoA reductase inhibitors (statins), cholesterol absorption inhibitors (ezetimibe), proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, nicotinic acids (niacin), fibric acids derivatives (fibrates), and long-chain omega-3 fatty acids. Statin is usually the first line therapy. Combination therapy with statin and other lipid-lowering agents may be considered in some clinical settings. For patients with acute coronary syndrome (ACS) and stable CAD, LDL-C < 70 mg/dL is the major target. A lower target of LDL-C <55 mg/dL can be considered in ACS patients with DM. After treating LDL-C to target, non-HDL-C can be considered as a secondary target for patients with TG ≥ 200 mg/dL. The suggested non-HDL-C target is < 100 mg/dL in ACS and CAD patients. For patients with ischemic stroke or transient ischemic attack presumed to be of atherosclerotic origin, statin therapy is beneficial and LDL-C < 100 mg/dL is the suggested target. For patients with symptomatic carotid stenosis or intracranial arterial stenosis, in addition to antiplatelets and blood pressure control, LDL-C should be lowered to < 100 mg/dL. Statin is necessary for DM patients with CV disease and the LDL-C target is < 70 mg/dL. For diabetic patients who are ≥ 40 years of age, or who are < 40 years of age but have additional CV risk factors, the LDL-C target should be < 100 mg/dL. After achieving LDL-C target, combination of other lipid-lowering agents with statin is reasonable to attain TG < 150 mg/dL and HDL-C >40 in men and >50 mg/dL in women in DM. LDL-C increased CV risk in patients with CKD. In adults with glomerular filtration rate (GFR) < 60 mL/min/1.73m without chronic dialysis (CKD stage 3-5), statin therapy should be initiated if LDL-C ≥ 100 mg/dL. Ezetimibe can be added to statin to consolidate the CV protection in CKD patients. Mutations in LDL receptor, apolipoprotein B and PCSK9 genes are the common causes of FH. Diagnosis of FH usually depends on family history, clinical history of premature CAD, physical findings of xanthoma or corneal arcus and high levels of LDL-C. In addition to conventional lipid lowering therapies, adjunctive treatment with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.