We report here the characterization of a large Chinese family with maternally transmitted aminoglycoside-induced and nonsyndromic deafness. In the absence of aminoglycosides, some matrilineal relatives in this family exhibited late-onset/progressive deafness, with a wide range of severity and age at onset. Notably, the average age at onset of deafness has changed from 55 years (generation II) to 10 years (generation IV). Clinical data reveal that the administration of aminoglycosides can induce or worsen deafness in matrilineal relatives. The age at the time of drug administration appears to be correlated with the severity of hearing loss experienced by affected individuals. Sequence analysis of mitochondrial DNA in this pedigree identified a homoplasmic C-to-T transition at position 1494 (C1494T) in the 12S rRNA gene. The C1494T mutation is expected to form a novel U1494-1555A base pair, which is in the same position as the C1494-1555G pair created by the deafness-associated A1555G mutation, at the highly conserved A site of 12S rRNA. Exposure to a high concentration of paromomycin or neomycin caused a variable but significant average increase in doubling time in lymphoblastoid cell lines derived from four symptomatic and two asymptomatic individuals in this family carrying the C1494T mutation when compared to four control cell lines. Furthermore, a significant decrease in the rate of total oxygen consumption was observed in the mutant cell lines. Thus, our data strongly support the idea that the A site of mitochondrial 12S rRNA is the primary target for aminoglycoside-induced deafness. These results also strongly suggest that the nuclear background plays a role in the aminoglycoside ototoxicity and in the development of the deafness phenotype associated with the C1494T mutation in the mitochondrial 12S rRNA gene.
In this report, we investigated the molecular genetic mechanism underlying the deafness-associated mitochondrial tRNAHis 12201T>C mutation. The destabilization of a highly conserved base-pairing (5A-68U) by the m.12201T>C mutation alters structure and function of tRNAHis. Using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mtDNA-less (ρo) cells, we showed ∼70% decrease in the steady-state level of tRNAHis in mutant cybrids, compared with control cybrids. The mutation changed the conformation of tRNAHis, as suggested by slower electrophoretic mobility of mutated tRNA with respect to the wild-type molecule. However, ∼60% increase in aminoacylated level of tRNAHis was observed in mutant cells. The failure in tRNAHis metabolism was responsible for the variable reductions in seven mtDNA-encoded polypeptides in mutant cells, ranging from 37 to 81%, with the average of ∼46% reduction, as compared with those of control cells. The impaired mitochondrial translation caused defects in respiratory capacity in mutant cells. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increase in the production of reactive oxygen species in the mutant cells. The data provide the evidence for a mitochondrial tRNAHis mutation leading to deafness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.