Long noncoding RNAs (lncRNAs) are involved in the pathology of colorectal cancer (CRC). Current efforts to eradicate CRC predominantly focused on targeting the proliferation of rapidly growing cancer epithelial cells. This is largely ineffective with resistance arising in most tumors after exposure to chemotherapy. Despite the long‐standing recognition of the crosstalk between carcinoma‐associated fibroblasts (CAFs) and cancer cells in the tumor microenvironment, how CAFs may contribute to drug resistance in neighboring cancer cells is not well characterized. Here, we show that lncRNA CCAL (colorectal cancer‐associated lncRNA) promotes oxaliplatin (Oxa) resistance of CRC cells. RNA‐ISH shows higher CCAL expressed in the tumor stroma compared to cancer nests of CRC tissues. Functional studies reveal that CCAL is transferred from CAFs to the cancer cells via exosomes, where it suppresses CRC cell apoptosis, confers chemoresistance and activates β‐catenin pathway in vitro and in vivo. Mechanistically, CCAL interacts directly with mRNA stabilizing protein HuR (human antigen R) to increase β‐catenin mRNA and protein levels. Our findings indicate that CCAL expressed by CAFs of the colorectal tumor stroma contributes to tumor chemoresistance and CCAL may serve as a potential therapeutic target for Oxa resistance.
BackgroundMoyamoya disease (MMD) is an uncommon cerebrovascular disorder characterized by progressive occlusion of the internal carotid artery causing cerebral ischemia and hemorrhage. Genetic factors in the etiology and pathogenesis of MMD are being increasingly recognized. Previous studies have shown that the RNF213 gene was related to MMD susceptibility in the Japanese population. However, there is no large scale study of the association between this gene and MMD in the Chinese Han population. Thus we designed this case-control study to validate the R4810K mutation and to define the further spectrum of RNF213 mutations in Han Chinese.Methodology/Principal FindingsGenotyping of the R4810K mutation in the RNF213 gene was performed in 170 MMD cases and 507 controls from a Chinese Han population. The R4810K mutation was identified in 22 of 170 MMD cases (13%), including 21 heterozygotes and a single familial homozygote. Two of the 507 controls (0.4%) were heterozygous R4810K carriers. The R4810K mutation greatly increased the risk for MMD (OR = 36.7, 95% CI: 8.6∼156.6, P = 6.1 E-15). The allele frequency of R4810K was significantly different between patients with ischemia and hemorrhage (OR = 5.4, 95% CI: 1.8∼16.1, P = 0.001). Genomic sequencing covering RNF213 exon 40 to exon 68 also identified eight other non-R4810K variants; P4007R, Q4367L, A4399T, T4586P, L4631V, E4950D, A5021V and M5136I. Among them A4399T polymorphism was found in 28/170 cases (16.5%) and 45/507 controls (8.9%) and was associated with MMD (OR = 2.0, 95% CI: 1.2∼3.3, P = 0.004), especially with hemorrhage (OR = 2.8, 95% CI: 1.2∼6.5, P = 0.014).Conclusions RNF213 mutations are associated with MMD susceptibility in Han Chinese. The ischemic type MMD is particularly related to the R4810K mutation. However, A4399T is also a susceptible variant for MMD, primarily associated with hemorrhage. Identification of novel variants in the RNF213 gene further highlights the genetic heterogeneity of MMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.