BACKGROUNDNo adjuvant treatment has been established for patients who remain at high risk for recurrence after neoadjuvant chemoradiotherapy and surgery for esophageal or gastroesophageal junction cancer. METHODSWe conducted CheckMate 577, a global, randomized, double-blind, placebo-controlled phase 3 trial to evaluate a checkpoint inhibitor as adjuvant therapy in patients with esophageal or gastroesophageal junction cancer. Adults with resected (R0) stage II or III esophageal or gastroesophageal junction cancer who had received neoadjuvant chemoradiotherapy and had residual pathological disease were randomly assigned in a 2:1 ratio to receive nivolumab (at a dose of 240 mg every 2 weeks for 16 weeks, followed by nivolumab at a dose of 480 mg every 4 weeks) or matching placebo. The maximum duration of the trial intervention period was 1 year. The primary end point was disease-free survival. RESULTSThe median follow-up was 24.4 months. Among the 532 patients who received nivolumab, the median disease-free survival was 22.4 months (95% confidence interval [CI], 16.6 to 34.0), as compared with 11.0 months (95% CI, 8.3 to 14.3) among the 262 patients who received placebo (hazard ratio for disease recurrence or death, 0.69; 96.4% CI, 0.56 to 0.86; P<0.001). Disease-free survival favored nivolumab across multiple prespecified subgroups. Grade 3 or 4 adverse events that were considered by the investigators to be related to the active drug or placebo occurred in 71 of 532 patients (13%) in the nivolumab group and 15 of 260 patients (6%) in the placebo group. The trial regimen was discontinued because of adverse events related to the active drug or placebo in 9% of the patients in the nivolumab group and 3% of those in the placebo group. CONCLUSIONSAmong patients with resected esophageal or gastroesophageal junction cancer who had received neoadjuvant chemoradiotherapy, disease-free survival was significantly longer among those who received nivolumab adjuvant therapy than among those who received placebo. (Funded by Bristol Myers Squibb and Ono Pharmaceutical; CheckMate 577 ClinicalTrials.gov number, NCT02743494.
In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML-RARalpha SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML-RARalpha catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.
BACKGROUNDFirst-line chemotherapy for advanced esophageal squamous-cell carcinoma results in poor outcomes. The monoclonal antibody nivolumab has shown an overall survival benefit over chemotherapy in previously treated patients with advanced esophageal squamous-cell carcinoma. METHODSIn this open-label, phase 3 trial, we randomly assigned adults with previously untreated, unresectable advanced, recurrent, or metastatic esophageal squamouscell carcinoma in a 1:1:1 ratio to receive nivolumab plus chemotherapy, nivolumab plus the monoclonal antibody ipilimumab, or chemotherapy. The primary end points were overall survival and progression-free survival, as determined by blinded independent central review. Hierarchical testing was performed first in patients with tumor-cell programmed death ligand 1 (PD-L1) expression of 1% or greater and then in the overall population (all randomly assigned patients). RESULTSA total of 970 patients underwent randomization. At a 13-month minimum followup, overall survival was significantly longer with nivolumab plus chemotherapy than with chemotherapy alone, both among patients with tumor-cell PD-L1 expression of 1% or greater (median, 15.4 vs. 9.1 months; hazard ratio, 0.54; 99.5% confidence interval [CI], 0.37 to 0.80; P<0.001) and in the overall population (median, 13.2 vs. 10.7 months; hazard ratio, 0.74; 99.1% CI, 0.58 to 0.96; P = 0.002). Overall survival was also significantly longer with nivolumab plus ipilimumab than with chemotherapy among patients with tumor-cell PD-L1 expression of 1% or greater (median, 13.7 vs. 9.1 months; hazard ratio, 0.64; 98.6% CI, 0.46 to 0.90; P = 0.001) and in the overall population (median, 12.7 vs. 10.7 months; hazard ratio, 0.78; 98.2% CI, 0.62 to 0.98; P = 0.01). Among patients with tumor-cell PD-L1 expression of 1% or greater, a significant progression-free survival benefit was also seen with nivolumab plus chemotherapy over chemotherapy alone (hazard ratio for disease progression or death, 0.65; 98.5% CI, 0.46 to 0.92; P = 0.002) but not with nivolumab plus ipilimumab as compared with chemotherapy. The incidence of treatment-related adverse events of grade 3 or 4 was 47% with nivolumab plus chemotherapy, 32% with nivolumab plus ipilimumab, and 36% with chemotherapy alone. CONCLUSIONSBoth first-line treatment with nivolumab plus chemotherapy and first-line treatment with nivolumab plus ipilimumab resulted in significantly longer overall survival than chemotherapy alone in patients with advanced esophageal squamous-cell carcinoma, with no new safety signals identified. (Funded by Bristol Myers Squibb and Ono Pharmaceutical; CheckMate 648 ClinicalTrials.gov number, NCT03143153.
Pseudomonas aeruginosa delivers the toxin ExoU to eukaryotic cells via a type III secretion system. Intoxication with ExoU is associated with lung injury, bacterial dissemination and sepsis in animal model and human infections. To search for ExoU targets in a genetically tractable system, we used controlled expression of the toxin in Saccharomyces cerevisiae. ExoU was cytotoxic for yeast and caused a vacuolar fragmentation phenotype. Inhibitors of human calcium-independent (iPLA 2 ) and cytosolic phospholipase A 2 (cPLA 2 ) lipase activity reduce the cytotoxicity of ExoU. The catalytic domains of patatin, iPLA 2 and cPLA 2 align or are similar to ExoU sequences. Sitespeci®c mutagenesis of predicted catalytic residues (ExoUS142A or ExoUD344A) eliminated toxicity. ExoU expression in yeast resulted in an accumulation of free palmitic acid, changes in the phospholipid pro®les and reduction of radiolabeled neutral lipids. ExoUS142A and ExoUD344A expressed in yeast failed to release palmitic acid. Recombinant ExoU demonstrated lipase activity in vitro, but only in the presence of a yeast extract. From these data we conclude that ExoU is a lipase that requires activation or modi®cation by eukaryotic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.