The morphology of nanoparticles influences their cellular uptake process, while rough surface-enhanced affinity renders rough nanoparticles desirable in related biomedical applications. In this work, rattle-structured rough nanocapsules (Au@HSN-PGEA, AHPs) composed of in-situ-formed gold nanorod (Au NR) cores and polycationic mesoporous silica shells were constructed for trimodal complementary cancer therapy. Taking advantage of surface roughness, near-infrared (NIR) responsiveness, and controlled release manner, AHPs were expected to realize the co-delivery of sorafenib (SF, a hydrophobic antiproliferative and antiangiogenic drug) and antioncogene p53 for malignant hepatocellular carcinoma treatment. The rough surface feature of AHP was investigated for cellular uptake and the subsequent gene transfection. The feasibility of photothermal Au NR cores for NIR-triggered SF release was also tested. Notably, synergistic effects based on photothemal therapy-enhanced chemotherapy were achieved. In addition, the good in vivo performance of the proposed multifunctional nanoparticles with rough surfaces was also demonstrated. The current work extends the biomedical applications of the intriguing rough nanoparticles and provides a facile strategy to construct flexible platforms for complementary gene/chemo/photothermal therapy.
This study was conducted to investigate the effect of Bacillus amyloliquefaciens ( BA: ) on the immune function of broilers challenged with lipopolysaccharide ( LPS: ). 192 one-day-old male Arbor Acre broiler chickens were randomly distributed into four treatments: 1) broilers fed a basal diet; 2) broilers fed a basal diet supplemented with BA; 3) LPS-challenged broilers fed a basal diet; and 4) LPS-challenged broilers fed a basal diet supplemented with BA. Each treatment consisted of six replicates with eight broilers per replicate. Broilers were intraperitoneally injected with either 500 μg LPS per kg body weight or sterile saline at 16, 18 and 20 d of age. LPS decreased the average daily gain ( ADG: , P = 0.001) and average daily feed intake (P = 0.001). The decreased ADG (P = 0.009) and increased feed conversion ratio (P = 0.047) in LPS-challenged broilers were alleviated by BA. LPS increased the relative spleen weight (P = 0.001). Relative spleen (P = 0.014) and bursa (P = 0.024) weights in the LPS-challenged broilers were reduced by BA. LPS increased white blood cell ( WBC: ) numbers (P = 0.001). However, the WBC numbers (P = 0.042) and the ratio of lymphocytes to WBC (P = 0.020) in LPS-challenged broilers were decreased with BA treatment. LPS decreased plasma lysozyme activity (P = 0.001), but increased concentrations of plasma corticosterone (P = 0.012) and IL-2 (P = 0.020). In contrast, BA increased lysozyme activity in plasma (P = 0.040). LPS increased mRNA abundances of splenic toll-like receptor 4 (P = 0.046), interferon γ (P = 0.008), IL-1β (P = 0.045) and IL-6, (P = 0.006). IL-2 (P = 0.014) and IL-6 (P = 0.074) mRNA abundances in LPS-challenged broilers were reduced by BA, although BA had an opposite effect for IL-10 mRNA expression in those broilers (P = 0.004). In conclusion, BA supplementation could partially alleviate the compromised growth performance and immune status of broilers under immune stress induced by LPS challenge at early age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.