Zn- and Na-modulated Fe catalysts were fabricated by a simple coprecipitation/washing method. Zn greatly changed the size of iron species, serving as the structural promoter, while the existence of Na on the surface of the Fe catalyst alters the electronic structure, making the catalyst very active for CO activation. Most importantly, the electronic structure of the catalyst surface suppresses the hydrogenation of double bonds and promotes desorption of products, which renders the catalyst unexpectedly reactive toward alkenes-especially C5+ alkenes (with more than 50% selectivity in hydrocarbons)-while lowering the selectivity for undesired products. This study enriches C1 chemistry and the design of highly selective new catalysts for high-value chemicals.
Direct synthesis of aromatics from syngas is a great challenge because of severe operating conditions and low yield of aromatics. Making this process more competitive than the MTA (methanol to aromatics) process will require high energy efficiency and low CO 2 emission. A combination of Na-Zn-Fe 5 C 2 and hierarchical HZSM-5 with uniform mesopores dramatically changed the product distribution of Fischer-Tropsch synthesis, leading to 51% aromatic selectivity under the stable stage with CO conversion >85%. C 12+ heavy hydrocarbons almost disappeared, and the catalyst showed good stability. The hierarchical zeolitic structure and Brønsted acidity of HZSM-5 could be precisely tuned by controlling the alkali treatment conditions and the degree of ion exchange. The appropriate density and strength of the Brønsted acid sites and the hierarchical pore structure of HZSM-5 endowed the catalyst with an unprecedented aromatic yield. This work shows a broad area for development for syngas conversion.Recently, a high-performance catalyst, Na-Zn-Fe 5 C 2 (termed as FeZnNa), was developed by the co-precipitation method (Figures S1-S3). 22 The molar weight ratio of
Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light-emitting diodes, and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescence properties are usually studied under Stokes excitation, in which the emitted photons are at a lower energy than the excitation ones. In this work, we explore the opposite anti-Stokes process, where excitation is performed with lower-energy photons. We report that the process is sufficiently efficient to excite even a single quantum system—namely, the germanium-vacancy center in diamond. Consequently, we leverage the temperature-dependent, phonon-assisted mechanism to realize an all-optical nanoscale thermometry scheme that outperforms any homologous optical method used to date. Our results frame a promising approach for exploring fundamental light-matter interactions in isolated quantum systems and harness it toward the realization of practical nanoscale thermometry and sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.